2,798 research outputs found

    A Coloring Algorithm for Disambiguating Graph and Map Drawings

    Full text link
    Drawings of non-planar graphs always result in edge crossings. When there are many edges crossing at small angles, it is often difficult to follow these edges, because of the multiple visual paths resulted from the crossings that slow down eye movements. In this paper we propose an algorithm that disambiguates the edges with automatic selection of distinctive colors. Our proposed algorithm computes a near optimal color assignment of a dual collision graph, using a novel branch-and-bound procedure applied to a space decomposition of the color gamut. We give examples demonstrating the effectiveness of this approach in clarifying drawings of real world graphs and maps

    A Self-Linking Invariant of Virtual Knots

    Full text link
    In this paper we introduce a new invariant of virtual knots and links that is non-trivial for infinitely many virtuals, but is trivial on classical knots and links. The invariant is initially be expressed in terms of a relative of the bracket polynomial and then extracted from this polynomial in terms of its exponents, particularly for the case of knots. This analog of the bracket polynomial will be denoted {K} (with curly brackets) and called the binary bracket polynomial. The key to the combinatorics of the invariant is an interpretation of the state sum in terms of 2-colorings of the associated diagrams. For virtual knots, the new invariant, J(K), is a restriction of the writhe to the odd crossings of the diagram (A crossing is odd if it links an odd number of crossings in the Gauss code of the knot. The set of odd crossings is empty for a classical knot.) For K a virtual knot, J(K) non-zero implies that K is non-trivial, non-classical and inequivalent to its planar mirror image. The paper also condsiders generalizations of the two-fold coloring of the states of the binary bracket to cases of three and more colors. Relationships with graph coloring and the Four Color Theorem are discussed.Comment: 36 pages, 22 figures, LaTeX documen

    The edge chromatic number of outer-1-planar graphs

    Full text link
    A graph is outer-1-planar if it can be drawn in the plane so that all vertices are on the outer face and each edge is crossed at most once. In this paper, we completely determine the edge chromatic number of outer 1-planar graphs
    • …
    corecore