2 research outputs found

    Understanding Concurrency Vulnerabilities in Linux Kernel

    Full text link
    While there is a large body of work on analyzing concurrency related software bugs and developing techniques for detecting and patching them, little attention has been given to concurrency related security vulnerabilities. The two are different in that not all bugs are vulnerabilities: for a bug to be exploitable, there needs be a way for attackers to trigger its execution and cause damage, e.g., by revealing sensitive data or running malicious code. To fill the gap, we conduct the first empirical study of concurrency vulnerabilities reported in the Linux operating system in the past ten years. We focus on analyzing the confirmed vulnerabilities archived in the Common Vulnerabilities and Exposures (CVE) database, which are then categorized into different groups based on bug types, exploit patterns, and patch strategies adopted by developers. We use code snippets to illustrate individual vulnerability types and patch strategies. We also use statistics to illustrate the entire landscape, including the percentage of each vulnerability type. We hope to shed some light on the problem, e.g., concurrency vulnerabilities continue to pose a serious threat to system security, and it is difficult even for kernel developers to analyze and patch them. Therefore, more efforts are needed to develop tools and techniques for analyzing and patching these vulnerabilities.Comment: It was finished in Oct 201

    Neural network computing using on-chip accelerators

    Get PDF
    The use of neural networks, machine learning, or artificial intelligence, in its broadest and most controversial sense, has been a tumultuous journey involving three distinct hype cycles and a history dating back to the 1960s. Resurgent, enthusiastic interest in machine learning and its applications bolsters the case for machine learning as a fundamental computational kernel. Furthermore, researchers have demonstrated that machine learning can be utilized as an auxiliary component of applications to enhance or enable new types of computation such as approximate computing or automatic parallelization. In our view, machine learning becomes not the underlying application, but a ubiquitous component of applications. This view necessitates a different approach towards the deployment of machine learning computation that spans not only hardware design of accelerator architectures, but also user and supervisor software to enable the safe, simultaneous use of machine learning accelerator resources. In this dissertation, we propose a multi-transaction model of neural network computation to meet the needs of future machine learning applications. We demonstrate that this model, encompassing a decoupled backend accelerator for inference and learning from hardware and software for managing neural network transactions can be achieved with low overhead and integrated with a modern RISC-V microprocessor. Our extensions span user and supervisor software and data structures and, coupled with our hardware, enable multiple transactions from different address spaces to execute simultaneously, yet safely. Together, our system demonstrates the utility of a multi-transaction model to increase energy efficiency improvements and improve overall accelerator throughput for machine learning applications
    corecore