
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2016

Neural network computing using
on-chip accelerators

https://hdl.handle.net/2144/19511
Boston University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boston University Institutional Repository (OpenBU)

https://core.ac.uk/display/142073209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

NEURAL NETWORK COMPUTING USING ON-CHIP

ACCELERATORS

by

SCHUYLER ELDRIDGE

B.S., Boston University, 2010

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2016

© 2016 by
SCHUYLER ELDRIDGE
All rights reserved

Approved by

First Reader

Ajay J. Joshi, PhD
Associate Professor of Electrical and Computer Engineering

Second Reader

Allyn E. Hubbard, PhD
Professor of Biomedical Engineering
Professor of Electrical and Computer Engineering

Third Reader

Martin C. Herbordt, PhD
Professor of Electrical and Computer Engineering

Fourth Reader

Jonathan Appavoo, PhD
Associate Professor of Computer Science

. . . he looked carefully at the barman.

“A dry martini,” he said. “One. In a deep champagne goblet.”

“Oui, monsieur.”

“Just a moment. Three measures of Gordon’s, one of vodka, half a mea-
sure of Kina Lillet. Shake it very well until it’s ice-cold, then add a large
thin slice of lemon peel. Got it?”

“Certainly, monsieur.” The barman seemed pleased with the idea.

“Gosh, that’s certainly a drink,” said Leiter.

Bond laughed. “When I’m . . . er . . . concentrating,” he explained, “I never
have more than one drink before dinner. But I do like that one to be large
and very strong and very cold and very well-made. I hate small portions
of anything, particularly when they taste bad. This drink’s my own inven-
tion. I’m going to patent it when I can think of a good name.”

[Fleming, 1953]

iv

Acknowledgments

All of this work was enabled by my gracious funding sources over the past six years.

In my first year, Prof. Ayse Coskun helped me secure a Dean’s Fellowship through

Boston University. My second year was funded through Boston University’s former

Center of Excellence for Learning in Education, Science, and Technology (CELEST)

working with Dr. Florian Raudies and Dr. Max Versace. Florian and Max were

instrumental in providing my first introduction to biological modeling and neural

networks.

I am incredibly thankful for funding through the subsequent four years from the

National Aeronautics and Space Administration (NASA) via a Space Technology

Research Fellowship (NSTRF). This provided me with the unbelievable opportunity

to work at NASA Jet Propulsion Lab (JPL) for three summers with Dr. Adrian

Stoica. Adrian’s discussions were invaluable and I’m incredibly thankful for him

acting as host, mentor, instigator, and friend.

Digressing, I must mention a number of people who guided me along the way up

to this point and on whose wisdom I drew during this process. Luis Lovett, my figure

skating coach in Virginia, taught me that there’s beauty just in the effort of trying.

Allen Schramm, my choreographer, similarly showed me the brilliance of abandoning

perfection for artistic immersion within and without. Tommy Litz, my technical

coach, impressed on me that eventually you’ll hit a point and you just have to be a

man. And finally, Slavka Kohout, my competitive coach, taught me the unforgettable

lesson that the crowd really does just want to see blood.1

1c.f. [Hemingway, 1926]:

Romero’s bull-fighting gave real emotion, because he kept the absolute purity of line
in his movements and always quietly and calmly let the horns pass him close each
time. He did not have to emphasize their closeness. Brett saw how something that
was beautiful done close to the bull was ridiculous if it were done a little way off. I
told her how since the death of Joselito all the bull-fighters had been developing a
technique that simulated this appearance of danger in order to give a fake emotional

v

Naturally, I’m thankful for the help and guidance of my advisor, Prof. Ajay Joshi,

who helped me through (and stuck with me) during the meandering, confusing, and

dead-end-riddled path that I took. I am also forever indebted to Prof. Jonathan

Appavoo, acting as an unofficial advisor, collaborator, and friend over the past three

years. My one regret throughout this whole process was not getting to know him

sooner.

It goes without saying that none of this would have been possible without the

friendship of my parents, John and Diana Eldridge. They have consistently been my

wellspring of support throughout my life. This is further remarkable considering our

atypical family and all of the extraneous and incredibly challenging circumstances

we’ve collectively experienced. Furthermore, my lifelong friends Alex Scott and Peter

Achenbaum have always been there and, critically, always ready for a cocktail.

Finally, as I’ve attempted to impress on new PhD students, a PhD is a psycholog-

ical gauntlet testing your mental limits. It’s hard, it’s terrible, and it will push you

in every way imaginable, but it’s one of the only times in your lives when you can

lose yourself in maniacal focus. It’s a lot like wandering into a forest.2 It’s pretty for

a while, but you will eventually, without fail, become (seemingly) irrevocably lost.

Be worried, but not overly so—there’s a catharsis coming. You will hit a point and

you’ll take ownership,3 and after that your perspective in all things changes. So, it

does get better, I promise, and there’s beauty in all of it.

feeling, while the bull-fighter was really safe. Romero had the old thing, the holding
of his purity of line through the maximum of exposure, while he dominated the bull
by making him realize he was unattainable, while he prepared him for the killing.

2c.f. [The Cure, 1980]
3c.f. [The Cure, 1985]

vi

NEURAL NETWORK COMPUTING USING ON-CHIP

ACCELERATORS

SCHUYLER ELDRIDGE

Boston University, College of Engineering, 2016

Major Professor: Ajay J. Joshi, PhD
Associate Professor of Electrical and Computer
Engineering

ABSTRACT

The use of neural networks, machine learning, or artificial intelligence, in its broadest

and most controversial sense, has been a tumultuous journey involving three distinct

hype cycles and a history dating back to the 1960s. Resurgent, enthusiastic interest

in machine learning and its applications bolsters the case for machine learning as a

fundamental computational kernel. Furthermore, researchers have demonstrated that

machine learning can be utilized as an auxiliary component of applications to enhance

or enable new types of computation such as approximate computing or automatic par-

allelization. In our view, machine learning becomes not the underlying application,

but a ubiquitous component of applications. This view necessitates a different ap-

proach towards the deployment of machine learning computation that spans not only

hardware design of accelerator architectures, but also user and supervisor software to

enable the safe, simultaneous use of machine learning accelerator resources.

In this dissertation, we propose a multi-transaction model of neural network com-

putation to meet the needs of future machine learning applications. We demonstrate

that this model, encompassing a decoupled backend accelerator for inference and

vii

learning from hardware and software for managing neural network transactions can

be achieved with low overhead and integrated with a modern RISC-V microprocessor.

Our extensions span user and supervisor software and data structures and, coupled

with our hardware, enable multiple transactions from different address spaces to ex-

ecute simultaneously, yet safely. Together, our system demonstrates the utility of

a multi-transaction model to increase energy efficiency improvements and improve

overall accelerator throughput for machine learning applications.

viii

Preface

Neural Networks, machine learning, and artificial intelligence—some of the most

hyped technologies of the past half century—have seen a dramatic, recent resurgence

towards solving many hard yet computable problems. However, it is with the utmost

caution that the reader must temper their enthusiasm, as I have been forced to over

the duration of the following work. Nevertheless, neural networks are a very powerful

tool, while not truly biological to a purist, that reflect some of the structure of the

brain. These biological machines, evolved over millennia, must indicate a viable

computational substrate for processing the world around us. It is my belief, a belief

shared by others, that this style of computation provides a way forward—beyond the

current difficulties of semiconductor technology—towards more efficient, biologically-

inspired systems capable of providing the next great leap for computation. What

follows, broadly, concerns the design, analysis, and evaluation of hybrid systems that

bring neural networks as close as possible to traditional computer architectures. While

I admit that such architectures are only a stopgap, I hope that this will contribute

towards that aforementioned way forward.

ix

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 An ontology for computation 4

1.1.2 Machine learning accelerators of the future 6

1.2 Motivating Applications . 7

1.3 Outline of Contributions . 9

1.3.1 Thesis statement . 9

1.3.2 Contributions . 10

1.4 Dissertation Outline . 12

2 Background 14

2.1 A Brief History of Neural Networks 14

2.1.1 Neural networks and early computer science 14

2.1.2 Criticisms of neural networks and artificial intelligence 18

2.1.3 Modern resurgence as machine learning 21

2.2 Neural Network Software and Hardware 23

2.2.1 Software . 24

2.2.2 Hardware . 25

2.2.3 Context of this dissertation 28

3 T-fnApprox: Hardware Support for Fine-Grained Function Approx-

imation using MLPs 31

3.1 Function Approximation . 32

x

3.1.1 CORDIC and Unified CORDIC 34

3.2 A Fixed-topology Neural Network Accelerator 36

3.2.1 Approximation capability . 39

3.3 Evaluation . 42

3.3.1 Energy efficiency . 42

3.3.2 Comparison against traditional floating point 43

3.3.3 Affect on application benchmarks 47

3.4 Approximation and Fixed-topology Neural Network Accelerators . . . 48

4 X-FILES: Software/Hardware for Neural Networks as First Class

Primitives 52

4.1 Motivation: Neural Networks as Function Primitives 52

4.2 X-FILES: Software and Hardware for Transaction Management . . . 57

4.2.1 X-FILES Hardware Arbiter 60

4.2.2 Supervisor data structures: the ASID–NNID Table 63

4.2.3 Supervisor and user API . 67

4.3 Operating System Integration . 69

4.3.1 RISC-V Proxy Kernel . 69

4.3.2 RISCV-V Linux port . 70

4.4 Summary . 72

5 DANA: An X-FILES Accelerator for Neural Network Computation 73

5.1 Motivation and Guidelines for a General Neural Network Accelerator 74

5.2 DANA: A Dynamically Allocated Neural Network Accelerator 77

5.2.1 Transaction Table . 78

5.2.2 Configuration Cache . 79

5.2.3 ASID–NNID Table Walker . 82

5.2.4 Control module . 83

xi

5.2.5 Processing Elements . 84

5.2.6 Scratchpad memories . 86

5.3 Operation for Neural Network Transactions 88

5.3.1 Feedforward computation . 88

5.3.2 Learning . 89

5.4 Summary . 91

6 Evaluation of X-FILES/DANA 92

6.1 Different Implementations of X-FILES/DANA 92

6.2 X-FILES/DANA in SystemVerilog 95

6.2.1 Power and latency . 96

6.2.2 Single and multi-transaction throughput 101

6.3 Rocket + X-FILES/DANA . 107

6.4 Summary . 110

7 Conclusion 111

7.1 Summary of Contributions . 111

7.2 Limitations of X-FILES/DANA . 112

7.3 Future Work . 114

7.3.1 Transaction granularity . 114

7.3.2 Variable transaction priority 115

7.3.3 Asynchronous in-memory input–output queues 116

7.3.4 New X-FILES backends . 117

7.3.5 Linux kernel modifications . 118

7.4 Final Remarks . 118

References 119

Curriculum Vitae 129

xii

List of Tables

2.1 Related work on neural network software and hardware 23

3.1 Identities from Unified CORDIC . 35

3.2 Scaling steps for Unified CORDIC . 36

3.3 Error for neural networks approximating transcendental functions . . 40

3.4 Accelerator configurations with minimum energy delay error product 43

3.5 Error and energy of T-fnApprox approximating transcendental functions 43

3.6 Area, frequency, and energy of floating point transcendental functions 45

3.7 Energy delay product of T-fnApprox applied to transcendental functions 46

3.8 Percentage of execution time for transcendental functions in PARSEC 48

3.9 Error of PARSEC applications with T-fnApprox 49

4.1 X-FILES Hardware Arbiter Transaction Table bit fields 61

4.2 Exceptions generated by X-FILES/DANA 66

4.3 X-FILES supervisor and user API . 67

5.1 A taxonomy of neural network accelerators 74

6.1 Neural network configurations evaluated for feedforward transactions 99

6.2 Feedforward energy and performance gains of DANA vs. software . . 106

6.3 Neural network configurations evaluated for learning transactions . . 108

xiii

List of Figures

1·1 Venn diagram of general and special-purpose computation 4

2·1 A single artificial neuron with five inputs 16

2·2 A two layer neural network with four inputs and three outputs 17

2·3 Related software and hardware work 28

3·1 Decomposition of sine and cosine functions 35

3·2 Overview of the T-fnApprox hardware architecture 38

3·3 Approximated transcendental functions using a neural network 41

3·4 Instruction counts for transcendental functions in the GNU C Library 44

3·5 GNU C Library transcendental function energy consumption 45

4·1 Hardware/software view of neural network acceleration 54

4·2 The RoCC accelerator interface for RISC-V microprocessors 58

4·3 The X-FILES/DANA hardware architecture 60

4·4 An ASID–NNID Table . 65

5·1 Neural network configuration data structure 81

5·2 Processing Element architecture . 84

5·3 Block of elements DANA data format 85

5·4 Memory utilization in DANA for feedforward and learning transactions 86

6·1 Register File used for intermediate storage in early versions of DANA 94

6·2 X-FILES/DANA architecture in SystemVerilog 96

6·3 Power and performance of DANA in 40nm CMOS 97

xiv

6·4 Single-transaction throughput of X-FILES/DANA 102

6·5 Dual-transaction throughput of X-FILES/DANA 104

6·6 Dual-transaction throughput speedup of X-FILES/DANA 105

6·7 Learning throughput of X-FILES/DANA hardware vs. software . . . 109

xv

List of Abbreviations

AI . Artificial Intelligence
ALU . Arithmetic Logic Unit
ANTP ASID–NNID Table Pointer
ANTW ASID–NNID Table Walker
AOT. Ahead-of-time (Compilation)
API. Application Programming Interface
ASIC Application-specific Integrated Circuit
ASID Address Space Identifier
ATLAS Automatically Tuned Linear Algebra Software (ATLAS)
BJT . Bipolar Junction Transistor
BLAS. Basic Linear Algebra Subprograms
BSD . Berkeley Software Distribution
CAPI Coherent Accelerator Processor Interface
CISC Complex Instruction Set Computer
CGRA Coarse-grained Reconfigurable Accelerator
CMOS Complimentary Metal-oxide-semiconductor
CNN. Convolutional Neural Network
CNS . Cognitive Neuroscience
CORDIC Coordinate Rotation Digital Computer
CPU . Central Processing Unit
CSR . Control/Status Register
CUDA NVIDIA’s Parallel Programming API for GPUs
DANA Dynamically Allocated Neural Network Accelerator
DBN. Deep Belief Network
DNN. Deep Neural Network
DSP . Digital Signal Processor
EDIP Environmental-dependent Interatomic Potential
EDEP Energy-delay-error Product
EDP . Energy-delay Product
EDVAC. Electronic Discrete Variable Automatic Computer
ENIAC Electronic Numerical Integrator and Computer
FANN Fast Artificial Neural Network library
FPGA Field Programmable Gate Array
FPU . Floating Point Unit
GNU GNU’s Not Unix! (an open source software collection)

xvi

GPU. Graphics Processing Unit
HDL . Hardware Description Language
HMAX Hierarchical Model and X
IBM . International Business Machines
ICSG Boston University Integrated Circuits and Systems Group
IEEE The Institute of of Electrical and Electronics Engineers
ISA . Instruction Set Architecture
IoT . Internet of Things
JIT . Just-in-time (Compilation)
JPL. (NASA) Jet Propulsion Lab
JPEG. Joint Photographic Experts Group (an image standard)
LSTM Long Short Term Memory
LWC. Light-weight Check
MAC Multiply Accumulate
MLP. Multilayer Perceptron Neural Network
MOSFET Metal-oxide-semiconductor Field-effect-transistor
MSE . Mean Squared Error
NASA The National Aeronautics and Space Administration
NN . Neural Network
NNID. Neural Network Identifier
NPU. Neural Processing Unit
NSTRF NASA Space Technology Research Fellowship
OS. Operating System
PC . Personal Computer
PCIe. Peripheral Component Interconnect Express
PDK. Process Design Kit
PE. Processing Element
PK . (RISC-V) Proxy Kernel
RAP. Ring Array Processor
RAW Read After Write (hazard)
RISC Reduced Instruction Set Computer
RISC-V Fifth Generation of RISC Instruction Sets
RNN. Recurrent Neural Network
RTL . Register-transfer Level
RoCC. Rocket Custom Coprocessor
SCC . (Intel) Single Chip Cloud
SMT. Simultaneous Multithreading
SPARC Scalable Processor Architecture
TID . Transaction Identifier
UART Universal Asynchronous Receiver/Transmitter
VCD. Value Change Dump
VLIW Very Long Instruction Word

xvii

VLSI Very Large Scale Integration
WUPC Weight Updates per Cycle
X-FILES. Extensions for the Integration of Machine Learning in

Everyday Systems
X-FILES/DANA. X-FILES hardware with a DANA backend

xviii

1

Chapter 1

Introduction

1.1 Background

All computer architectures in the 20th and 21st centuries have struggled with the un-

fortunate, yet necessary, trade-off between generality and speciality of their computer

hardware designs. On the former extreme, and to serve the widest possible audience,

such hardware implements an instruction set architecture (ISA), e.g., RISC-V [Wa-

terman et al., 2014]. The ISA describes, at minimum, the fundamental units of

computation, i.e., instructions (e.g., ADD R1, R2, R3) which must be combined and

sequenced through programming to conduct useful, higher-order computation. On

the latter extreme, the highest performance and lowest power computer hardware is,

by definition, finely tuned to a specific application. These two extremes concisely

describe both a microprocessor (e.g., a CPU) built for general-purpose computing

and an Application Specific Integrated Circuit (ASIC) designed to solve one spe-

cific problem.1 Consequently, a myriad of dedicated, application-specific hardware

designs have been created dating back to the dawn of computer hardware in the

1950s. Over time the best and most utilitarian designs have eventually made their

way into commercial microprocessor implementations. The most prominent example

of special-purpose hardware eventually becoming part of a microprocessor is that of

floating point coprocessors/accelerators.

1Note that a microprocessor is an ASIC implementing an ISA, however, we refer to an ASIC in
a more general sense as a dedicated piece of hardware built for a specific application, e.g., an image
processing algorithm.

2

Floating point arithmetic provides a compact way to represent both very large and

very small numbers with a fixed relative error, but at increased computational cost.

In contrast, integer or fixed point representations utilize a fixed number of fractional

bits resulting in a varying relative error, but with simpler computational hardware.

Consequently, floating point arithmetic has long been a component of applications in

the scientific domain that encompass large scales and necessitate fixed relative errors.

Support for floating point arithmetic can be provided through either software running

on a general-purpose microprocessor or on a dedicated floating point accelerator.

The history of floating point hardware and its eventual migration into micropro-

cessors provides a rough trajectory that other dedicated hardware can be expected to

follow. A critical milestone in this history occurred in 1954 with IBM’s introduction

of the 704. The IBM 704 was the first commercially available computer with floating

point support backed by dedicated hardware. The 704 became IBM’s first entry in

its line of “scientific architectures.” The intent of the 704 was that these machines

would be marketed for use in scientific applications of importance to government or

industrial entities, e.g., NASA or the Department of Energy.2

In the span of 24 years, floating point hardware became mainstream enough that

Intel, in 1976, began work on a floating point coprocessor that, working alongside

an Intel CPU, would provide hardware floating point support. Intending to get this

right the first time, Intel (amongst others) bootstrapped the IEEE-754 floating point

standardization effort which notably included William Kahan. Four years later, in

1980, Intel released the 8087, a floating point coprocessor for its 8086 microprocessor,

that implemented a draft specification of IEEE-754. The 8087 could then be plugged

into a standard IBM PC providing hardware support for floating point arithmetic to

2Tangentially, this notion of floating point hardware making a computer a “scientific architecture”
provides an interesting juxtaposition with modern computers (e.g., servers, desktops, laptops) or
devices utilizing computational resources (e.g., cellphones, televisions) which all provide dedicated
floating point hardware but are not, arguably, “scientific” in nature.

3

the user. Nine years later, in 1989, Intel released the 80486 which was a dedicated

microprocessor that included an on-die floating point unit. Going forward from the

release of the 80486, nearly all microprocessors (barring restricted embedded architec-

tures or microcontrollers) have hardware support for floating point, and specifically,

a version of IEEE-754.

This general to special-purpose hardware transition of floating point arithmetic

over the course of 35 years provides useful insights and a possibly similar trajectory

for one of the key application domains of computing in the early 21st century: machine

learning. While machine learning (or neural networks, artificial intelligence, expert

machines, etc. ad nauseam) has had a tumultuous past (discussed in detail in Sec-

tion 2.1), its present successes are astounding and future promises appear attainable

and realistic.3

Additionally, machine learning has emerged as an alternative computing paradigm

to traditional algorithmic design. Machine learning allows an end user who has many

examples of a specific relationship (e.g., labeled images) to iteratively modify a ma-

chine learning substrate (e.g., a neural network) to represent the provided example

dataset and generalize to new data. This model provides extreme power for problem

domains with unclear or unknown solutions, but ample example data.

The recent successes of machine learning, largely driven by the achievements of

Yann LeCun [Lecun et al., 1998], Yoshua Bengio [Bengio, 2009], and Geoff Hin-

ton [Hinton et al., 2006], have precipitated effervescent interest in machine learning

hardware accelerators in addition to CPU and GPU-optimized versions of neural

networks. However, the proliferation of machine learning accelerators, while clearly

beneficial, necessitates some periodic evaluation and big picture analysis.

3While this is obviously speculation, anecdotal experience indicates that there exists a general
feeling within the machine learning community, heavily tempered by past failures, that, “This time
it’s different.”

4

GSSNNSNN−A

Figure 1·1: For a given computation, this can be decomposed into
regions for general purpose and special purpose computation and also,
special purpose regions offloaded to neural network accelerators.

1.1.1 An ontology for computation

One of these analyses concerns an overarching ontology of computation that encom-

passes general and special-purpose hardware and, additionally, makes room for dif-

ferent categories of neural network accelerators. Figure 1·1 shows this ontology by

breaking down regions of a computation into those which can be executed on dif-

ferent hardware. Broadly, all computation we generally care about4 can execute on

general-purpose, Turing complete hardware, G. Such general purpose hardware typi-

cally takes the form of a microprocessor executing a specific ISA. The benefit of this

approach is that the expensive costs of hardware design (i.e., of the general-purpose

microprocessor) are paid once. New applications can be created using the underly-

ing primitives that the hardware supports, i.e., the instructions a microprocessor can

execute.

Alternatively, special-purpose hardware, S designed for a specific application will

have improved energy efficiency at the cost of increased design time effort that must

be paid for each unit of special-purpose hardware. Additionally, the utility of such

hardware generally decreases for new applications.5 In consequence, only a subset of

the general-purpose computation region would be amenable to be offloaded to a given

unit of special-purpose hardware. Figure 1·1 reflects this due to the reduced size of

the region S relative to G.

4We naturally mean computation within P, i.e., problems computable with a deterministic Turing
machine. Alternatively, this is just a restatement of Cobham’s thesis [Cobham, 1965].

5Though, techniques do exist to create, e.g., patchable accelerators [Venkatesh et al., 2010].

5

Obviously, being able to reuse special-purpose hardware for multiple, disparate

applications amortizes the design time cost of the special-purpose hardware while

still retaining energy efficiency improvements. One avenue towards achieving this goal

involves thinking of “special-purpose substrates,” i.e., a substrate that can adapt and

specialize to meet the requirements of different workloads. Both Field Programmable

Gate Arrays (FPGAs) and Coarse-grained Reconfigurable Architectures (CGRAs)

are natural candidates. However, and as a dramatic alternative, neural networks

have some critical properties that makes them strong candidates for special-purpose

substrates.

Feedforward neural networks are universally approximate [Cybenko, 1989, Hornik,

1991] and recurrent neural networks (RNNs) are Turing complete [Siegelmann and

Sontag, 1995]. Consequently, these properties may allow neural networks to be trained

to suit multiple different problems while avoiding the repeated design time costs of

special purpose hardware on a per-application basis. Additionally, resurgent interest

motivates the inclusion of special purpose neural network accelerator hardware. We

define a subset of S in Figure 1·1 for computation that is amenable to acceleration

via neural networks, SNN . A further subdivision concerns portions of computation

amenable to acceleration via neural networks that are also amenable to approxima-

tion, SNN−A.

Mathematically, the relationships described above and in Figure 1·1 are defined

by the following equations:

6

General Purpose ≡ G (1.1)

Special Purpose ≡ S ⊆ G (1.2)

Special Purpose via Neural Networks ≡ SNN ⊆ S (1.3)

Approximable via Neural Networks ≡ SNN−A ⊆ SNN (1.4)

Due to resurgent interest in machine learning and the potential capacity for neural

network accelerators to act as special-purpose substrates (and, in effect, push upwards

from SNN into S), we focus on the development of accelerators that fit within the

areas of SNN−A and SNN .

1.1.2 Machine learning accelerators of the future

The second analysis concerns the design of neural network accelerators to meet the

requirements of future applications which will assumedly treat machine learning as an

application primitive. The aforementioned floating point analogy provides guidance,

but not the full picture due to the differences between floating point and machine

learning accelerators. We use the following questions to further drive the narrative:

• What are the characteristics of applications that treat machine learning as a

functional primitive?

• How should machine learning accelerators be integrated with computing sys-

tems?

• How and who will manage these accelerators as an increasing number of appli-

cations require access to machine learning hardware acceleration?

Nevertheless, the answers to these questions are difficult to address without some

concrete usages cases. We momentarily defer answers to these questions to first

7

discuss general-purpose and special-purpose hardware in light of recent, novel uses of

machine learning.

1.2 Motivating Applications

Two recent applications of machine learning, approximate computing via function

approximation [Esmaeilzadeh et al., 2012b, Amant et al., 2014, Moreau et al., 2015]

and automatic parallelization [Waterland et al., 2012, Waterland et al., 2014], employ

neural networks in untraditional ways. Specifically, they utilize machine learning to

augment and improve the energy efficiency of existing applications.

Neural networks can be used to approximate functions and, to maximize energy

efficiency gains, approximated functions should be hot, i.e., frequently used. Put

broadly, a user or compiler profiles or injects code to build up an approximate model

of some region of code. That region of code can then be replaced with an approx-

imate version. Dynamic programming/memoization is a classical, non-approximate

technique that uses a similar approach. While existing work in this area approxi-

mates compiler-identified hot regions in handpicked benchmarks, the obvious place

to look for hot functions is in shared code. Such shared code, assumedly packaged

into shared libraries, introduces an interesting opportunity for neural network accel-

erator hardware. Specifically, since neural networks are then approximating shared

functions, the constituent neural networks backing this approximation must also be

shared. This introduces the first requirement of future neural network accelerators,

namely the capacity for sharing descriptions of neural networks across requests.

In automatic parallelization work, neural networks predict future microprocessor

state.6 Spare system resources then speculate based on these predictions. As a

6 For readers with a hardware design background, this work can appear relatively opaque. A
helpful analogy is to view this work as a generalization of branch prediction (where a single bit
of state is predicted) to multiple bits. The predicted bits, however, can exist anywhere in the full
state of the microprocessor (architectural state, registers, memory). This work hinges on choosing

8

hedging mechanism and to improve performance, multiple predictions from a given

state are made. In consequence, many requests to access neural network resources

are generated at the same time. Similarly, as aforementioned approximate computing

work (or, more generally, machine learning) becomes more prominent, many different

processes may begin using the neural network accelerator resources of a system. This

introduces the second requirement of future neural network accelerators, namely the

capability to manage multiple simultaneous requests within short time frames. A

further, tangential benefit is the capability to exploit multiple requests to neural

network accelerator resources, e.g., to improve accelerator throughput.

These two applications demonstrate future directions for the use of machine learn-

ing and neural networks in applications. Specifically, machine learning augments and

benefits applications which were originally characterized as having no relation to ma-

chine learning. This directly contrasts with the current viewpoint where machine

learning is the application. While obviously extrapolatory, this viewpoint mirrors the

transition of floating point hardware from the realm of “scientific architectures” to

everyday computing systems, e.g., mobile phones. This transition requires a rethink-

ing of neural network accelerator hardware, as well as user and operating system

software, that integrates and manages both neural network sharing and requests to

access accelerator resources.

Not surprisingly, this dissertation applies a holistic, system-level view to neural

network computing that spans the software and hardware stack. Motivated by appli-

cations like approximate computing via neural networks and automatic paralleliza-

tion, we design accelerator hardware and software to support such new applications.

Specifically, we incorporate accelerator hardware alongside a traditional micropro-

points in an executing program where small numbers of bits change, e.g., at the top of loops. From
a mathematical view, this work views a microprocessor as a dynamical system where points with
small Hamming distances along the trajectory are predicted using machine learning. Approximate
predictions of state can still be useful.

9

cessor and include a full discussion of the user and supervisor (operating system)

software necessary to support future machine learning accelerators.7

1.3 Outline of Contributions

1.3.1 Thesis statement

Broadly, a multi-context, multi-transaction model of neural network computation has

the following benefits:

1. It aligns with the needs of modern, highly novel, and emerging applications that

utilize machine learning as an application primitive, for learning and prediction,

on top of which complex applications can be built.

2. Such a model can be achieved with low overhead while improving the overall

throughput of a backend accelerator matching this multi-transaction model.

3. The necessary management infrastructure for a multi-transaction model, both

hardware and software, can be sufficiently decoupled from the backend acceler-

ator such that multiple backends can be supported.

4. All hardware and software for such a model can be realized and integrated with

an existing general-purpose software and hardware environment.

Nevertheless, the benefits of a multi-transaction model are predicated on two

assertions. First, there exists sufficiently interesting work that can be achieved with

“small” neural networks, on the order of tens to hundreds of neurons, such that a

multi-transaction model can realize significant throughput improvements.8 Second,

7It is our opinion that such a system-level view is generally necessary when thinking about
non-trivial accelerators. Specifically, how will the user access an accelerator? How will the oper-
ating system manage the accelerator? What data structures need to be maintained across context
switches?

8Small neural networks have the potential for the most dramatic throughput gains in a multi-
transaction model due to the large number of data dependencies as a portion of the total number
of computations required to execute the network.

10

a neural network accelerator meeting the requirements outlined above does, in fact,

exist and can be realized.

Towards validating these assertions, we present two bodies of work. First, we

explore the design and implementation of an accelerator architecture for specific, fixed

topology neural networks. This accelerator enables fine-grained approximation of

mathematical functions in a shared library using small networks. Second, leveraging

lessons learned from this first accelerator, we design a new accelerator capable of

processing multiple neural network transactions simultaneously.

In experimental support of the aims of this thesis and towards validating the ben-

efits of our multi-transaction model, we provide and evaluate this second accelerator

implementation as well as its hardware and software integration with an open source

microprocessor and operating system. We experimentally evaluate this accelerator on

energy efficiency grounds and, expectedly, find dramatic gains over software. Further-

more, the accelerator improves its throughput with additional transactions validating

our multi-transaction model.

1.3.2 Contributions

Our design and implementation of a fixed topology neural network accelerator, T-

fnApprox, applies function approximation at very small functional granularities,

specifically transcendental functions. This work does not address the previous is-

sues of sharing and management of multiple transactions, but serves as an example

implementation of a neural network accelerator. This work then further motivates,

by counterexample, the need for a system-level view of neural network acceleration.

Additionally, this work empirically reiterates a rough lower bound on the amount

of computation that can be approximated using digital neural network accelerator

hardware.

Our proposed arbitrary topology neural network accelerator supporting both neu-

11

ral network sharing and a multi-transaction model comprises three specific contribu-

tions. First, we provide an example MLP neural network accelerator backend called

DANA (a Dynamically Allocated Neural Network Accelerator). DANA uses a Pro-

cessing Element (PE) model (similar to recent MLP accelerators in the approximate

computing literature [Esmaeilzadeh et al., 2012b, Moreau et al., 2015]). However, in

contrast to existing work, DANA does not execute a stored program implementing

a neural network, but uses a binary data structure describing a neural network—

what we refer to as a neural network configuration. DANA then can be viewed as a

control unit capable of scheduling the constituent neurons described by a neural net-

work configuration on its PEs. This model enables us to naturally support multiple

transactions via the interleaving of neurons from outstanding requests.

Second, we provide hardware and software support for managing requests to ac-

cess a backend neural network accelerator (with DANA being one example of such

a backend). This infrastructure, X-FILES, comprises a set of hardware and software

Extensions for the Integration of Machine Learning in Everyday Systems.9 On the

hardware side, we detail an X-FILES Hardware Arbiter that manages transactions,

i.e., requests to access DANA. We interface X-FILES/DANA as a coprocessor of a

Rocket RISC-V microprocessor developed at UC Berkeley [UC Berkeley Architecture

Research Group, 2016]. We then provide an X-FILES user software library that appli-

cation developers can use to include neural network transactions in their software. We

provide two sets of supervisor software: one that interfaces with a basic uniprocess-

ing kernel developed at UC Berkeley called the Proxy Kernel [RISC-V Foundation,

2016b] and another that provides support for the Linux kernel.

Together, this system comprises Rocket + X-FILES/DANA, i.e., a Rocket micro-

processor with an X-FILES transaction manager and a DANA accelerator. Finally we

9We beseech the reader to forgive the acronyms—no FOX, SKINNER, or CGB SPENDER cur-
rently exist.

12

evaluate Rocket + X-FILES/DANA using power and performance criteria on single

and multi-transaction workloads. All work related to X-FILES/DANA is provided

under a 3-clause Berkeley Software Distribution (BSD) license on our public GitHub

repository [Boston University Integrated Circuits and Systems Group, 2016].

In summary, the specific contributions of this dissertation are as follows:

• A fixed topology neural network accelerator architecture used for transcendental

function approximation, T-fnApprox, that demonstrates the limits of function

approximation techniques using digital accelerators [Eldridge et al., 2014]

• An architectural description of DANA, an arbitrary topology neural network ac-

celerator architecture capable of processing multiple neural network transactions

simultaneously [Eldridge et al., 2015]

• An architectural description of the X-FILES Hardware Arbiter, a hardware

transaction manager that facilitates scheduling of transactions on a backend

(of which DANA is provided as an example)

• A description of user and supervisor software necessary to facilitate the manage-

ment of transactions on the X-FILES Hardware Arbiter from both a user and

kernel perspective

• An evaluation of Rocket + X-FILES/DANA across the design space of X-

FILES/DANA and on single and multi-transaction workloads

1.4 Dissertation Outline

This dissertation is organized in the following manner. Section 2 details the history

of neural networks as well as the copious work in this area related to hardware ac-

celeration of neural networks and machine learning algorithms. Section 3 provides

a description and evaluation of T-fnApprox, a fixed topology architecture used for

13

mathematical function approximation. The limitations of this architecture are high-

lighted. Section 4 describes the X-FILES, hardware and software that enables the safe

use of neural network accelerator hardware by multiple processes. Section 5 describes

the architecture of our arbitrary topology neural network accelerator architecture,

DANA, that acts as a backend accelerator for the X-FILES. Section 6 evaluates X-

FILES/DANA, integrated with a RISC-V microprocessor on power and performance

metrics. In Section 7, we conclude and discuss observations and future directions for

this and related work.

14

Chapter 2

Background

2.1 A Brief History of Neural Networks

The history of neural networks, artificial intelligence, and machine learning1 is an

interesting study in and of itself largely due to the fact that this history is dotted

with proponents, detractors, significant advances, and three major waves of disap-

pointment and associated funding cuts.2 While not specifically necessary for the un-

derstanding of this dissertation or its contributions, we find that having some broad

perspective on the history of neural networks provides the reader with necessary

grounding that has unfortunately contributed to much of the past disappointment in

neural networks as computational tools over the past seven decades.

2.1.1 Neural networks and early computer science

The human brain or, much more generally, any cortical tissue has long been viewed

as an inspirational substrate for developing computing systems. Put simply, humans

and animals perform daily tasks which can be classified as computation (e.g., logical

inference, mathematics, navigation, and object recognition) and they are exceedingly

good at these tasks. Furthermore, these biological substrates are the result of millions

of years of evolution lending credence to the belief that these substrates are, at worst,

1We view these names as interchangeable—they all refer to similar aspects of the same underlying
problem: How do we design machines capable of performing human-level feats of computation? The
naming convention, historically, is largely an artifact of the research and funding climate at the time.

2These waves of disappointment are generally referred to hyperbolically as AI winters.

15

suitable and, more likely, highly optimized. It is therefore reasonable to expect that

such biological substrates provide guideposts towards developing machines capable

of similar computational feats. Unsurprisingly, psychological and biological devel-

opments motivated and shaped the views of the emerging area of computer science

during the early 20th Century.

Unfortunately, though perhaps unsurprisingly, the human brain is a highly com-

plex organ whose mechanisms are exceedingly difficult to discern.3 Nevertheless, cor-

tical tissue does demonstrate some regular structure. Namely, such tissue is composed

of interconnected elementary cells, neurons, that communicate through electrical and

chemical discharges, synapses, that modify the electrical potential of a neuron.

While the full computational properties of biological neurons are complex and not

completely understood,4 neurons generally demonstrate behavior as threshold units:

if the membrane potential, the voltage of the neuron augmented by the summation of

incident connections, exceeds a threshold, the neuron generates a spike to its outgoing

connected neurons. McCulloch and Pitts provide an axiomatic description of an

artificial neuron in this way [McCulloch and Pitts, 1943].

Broadly, an individual, artificial neuron in the style of McCulloch and Pitts is an

approximation of a biological neuron. Each artificial neuron, like the one shown in

Figure 2·1, consists of a unit that fires or does not fire in response to a number of

inputs, Xi. Specifically, if the weighted sum of the inputs, Xi ×Wi, exceeds a bias,

then the neuron “fires” and produces an output, Y . The firing action is determined

by applying an activation function, σ in Figure 2·1, that represents some type of

threshold. Common activation functions are either a sigmoid, returning values on

3Relatedly, the blunt instruments of biologists, psychologists, and cognitive researchers exacerbate
this problem [Lazebnik, 2004, Jonas and Kording, 2016].

4A specific example here is the method of information storage of biological neurons—is infor-
mation stored in the binary presence/absence of a synapse, in the timing of the synapses, in both
simultaneously?

16

W1 W2 W3 W4
W5

X1 X2 X3 X4 X5 bias

σ

(∀ inputs∑
i

Xi ×Wi + bias

)

Y

Figure 2·1: A single artificial neuron with five inputs

range [0, 1], or a hyperbolic tangent, returning values on range [−1, 1]. Other options

include rectification using a ramp or softplus function to produce an unbounded

output on range [0,∞].

Critically, McCulloch and Pitts also demonstrated how assemblies of neurons can

be structured to represent logic functions (e.g., Boolean AND and OR gates), storage

elements, and, through the synthesis of logic and storage, a Turing machine. Later

work by Frank Rosenblatt solidified the biological notion of receptive fields, i.e., groups

of neurons, here termed perceptrons, producing different behavior based on their local

regions of activation [Rosenblatt, 1958]. The resulting body of work derived from and

related to this approach is termed connectionism.

Assemblies of artificial neurons form artificial neural networks.5 Figure 2·2 shows

an example two-layer neural network. This neural network transforms four inputs,

[X1, X2, X3, X4], into two outputs [Y1, Y2], through the use of seven hidden neurons.

Each neuron in the hidden or output layer is a replica of the neuron shown in Fig-

5We drop the “artificial” qualifier and just refer to artificial neural networks as “neural networks”
throughout this dissertation.

17

X1 X2 X3 X4

bias

bias

Y1 Y2

Hidden
Layer

Input
Layer

Output
Layer

Figure 2·2: A two layer neural network with four inputs and three
outputs

ure 2·1. Note that the neurons in the input layer are pass-through and do not modify

their inputs. Through careful selection of weights, the neural network can be made

to approximate a general input–output relationship or, much more simply and stated

previously, arbitrary Boolean functions or collections of Boolean functions.

This fact was not lost on early pioneers of computer science who drew heavy in-

spiration from biological neurons when designing early computers.6 In fact, it seemed

only natural that neurons should form the basis of computing. Neurons could act like

logic gates and Claude Shannon had already demonstrated the equivalence of existing

digital circuit elements and Boolean logic [Shannon, 1938]. Qualitatively, John von

Neumann specifically refers to the work of McCulloch and Pitts in his technical notes

on the design of the EDVAC [von Neumann, 1993].7 However, and more interestingly,

6Similarly, this notion of neurons as Boolean functions coincidentally or causally aligns with the
early 20th Century focus on the philosophy and foundation of mathematics with particular focus on
Logicism, i.e., the efforts of Betrand Russel and Alfred North Whitehead to reduce mathematics to
logic [Whitehead and Russell, 1912]. Granted, later proofs by Kurt Gödel make this line of thought
less convincing and even intractable.

7The Electronic Discrete Variable Automatic Computer was a bit serial computer developed for
the United States Army’s Ballistics Research Laboratory at the Aberdeen Proving Ground and a
predecessor of the more well known ENIAC.

18

this biological motivation is implicit in von Neumann’s descriptions of computational

units as “Organs”, the bit serial architecture of the EDVAC, and even in the very

figures that von Neumann uses to describe the computational organs as assemblies

of neurons. Similar sentiments, and almost entirely biologically-inspired designs, are

presented again by von Neumann when he discusses approaches to build reliable

computing systems [von Neumann, 1956]. Relatedly, Alan Turing commented exten-

sively on the philosophical struggle of what it truly means for a machine to “think”,

i.e., reproduce the computational capabilities of the brain in a way indistinguishable

to a human observer [Turing, 1950]. Programmatic approaches to general-purpose

learning by machines, with psychological influences, can be seen by the concept of

memoization as proposed by Donald Michie [Michie, 1968]. Here a machine (or a

human), performs some action by rote memorization (e.g., via top-down dynamic

programming) or by some rule (e.g., an algorithm).

In short, it is exceedingly difficult, though likely unnecessary, to decouple the pre-

dominant biological computing substrate, the brain, from artificial computing sub-

strates. However, as this area of research progressed, traditional computing with

logic gates as the primitives broke off from connectionist approaches that aligned

with artificial intelligence efforts.

2.1.2 Criticisms of neural networks and artificial intelligence

Nevertheless, this emerging area of artificial intelligence proceeded with fits and starts

and notable high profile criticism.

First, Hubert Dreyfus, working for RAND corporation, provided a stark criti-

cism of artificial intelligence research. Dreyfus’ report questioned the fundamental

assumptions of the brain as hardware and the mind as software [Dreyfus, 1965].8 Put

8It is interesting to note that the very title of this work, “Alchemy and Artificial Intelligence,”
draws parallels to modern work on deep neural networks—the networks are not fully understood
and the construction and training of these networks is viewed as a black art.

19

simply, much of the research into building a machine with artificial intelligence hinges

on the tenuous assumption that the brain, hardware, is a collection of neurons act-

ing as logic gates and the mind, software, is either the organization or the program

running on the hardware. However, just because neurons (or artificial representa-

tions of neurons) can be constructed in such a way that they behave like logic gates

does not mean that this is the only function of neurons. Analogously, transistors,

either metal-oxide-semiconductor field-effect-transistors (MOSFETs) or bipolar junc-

tion transistors (BJTs), can be arranged to behave like logic gates. However, this

does not mean that such behavior encompasses the underlying physics or information

processing capabilities of transistors.

Second, and most often recalled, Marvin Minsky and Seymour Papert published

Perceptrons in 1969 that provided bounds on the fundamental computational limits

of neurons [Minsky and Papert, 1987]. Specifically, and famously, Minksy describes

the scenario of a single neuron, like that of Figure 2·1, being incapable of learning an

XOR relationship due to the fact that this representation is not linearly separable.

In effect, a single neuron is not a universal logic gate. Granted, the obvious counter

criticism is that neural networks composed of more than one neuron in series can

learn an XOR function. Nevertheless, this observation led to a decrease in interest in

connectionist architectures.

Third, Sir James Lighthill provided a scathing critique of current artificial intelli-

gence research with the dramatic effect being that the United Kingdom scaled back all

research in this area [Lighthill, 1973]. Briefly, it is worth mentioning Lighthill’s classi-

fication of AI research as it bears similarities to the continued difficulties and problems

of research in the field (or machine learning/neural networks) today. Lighthill groups

AI research into three main areas:

Improved Automation (class A) Work in this area encompasses improvements

20

to traditional techniques of object recognition, natural language processing, and

similar topics. This work is relatively easy to evaluate as it can be compared

directly against the best existing traditional approach that does not have any

grounding in biology.

Cognitive Neuroscience (CNS) Research assisted by a Computer (class C)

CNS research can be augmented and enhanced by the use of computers through

the simulation of biological systems, e.g., neurons. Additionally, this allows for

fundamental psychological concepts to be tested with assemblies similar to or

inspired by biology.

Bridge Activities, chiefly Robotics (class B) This work attempts to combine

fundamental CNS research with improved automation and often takes the form

of, as Lighthill somewhat derogatorily calls, “building robots.”

The identified split between Lighthill’s A and C classes largely persists to this day.

Fundamental advances in neural networks and machine learning has enabled dramatic

improvements in automation, e.g., image classification. Similarly, the ability of models

of the cortical tissue of the human or animal brain to be simulated in computer

software or hardware allows for new insights to be gleaned in both neuroscience and

psychology. However, the combination of these two research areas still leaves much

to be desired. Put differently, biological inspiration cannot be a beneficial criteria

in its own right or, similarly, adopting a biologically-inspired approach is no explicit

guarantee of success.9 Nevertheless, there is no reason to not take inspiration from

biology ! The expectations, however, must be tempered appropriately. Furthermore,

the lack of tempered expectations, promises, and restraint by researchers can be

viewed as a dominant cause in the repeated periods of disenfranchisement with neural

9This is something which I learned the hard way through an experiment involving a hardware
implementation of a biologically-inspired approach to optical flow [Raudies et al., 2014]. While
interesting in its own right, such work was unable to achieve comparable performance to a state of
the art traditional, i.e., a non-biologically-inspired, approach.

21

networks.

In combined effect, these criticisms diminished interest (and funding) in connec-

tionist approaches to artificial intelligence, i.e., approaches involving groupings of

neurons into larger assemblies, until their resurgence in the 1990s.

2.1.3 Modern resurgence as machine learning

Following the initial downfall of connectionist approaches, the 1980s commercial ar-

tificial intelligence market was dominated by expert systems and Lisp machines that

aimed to describe the world with rules. Nevertheless, these systems and their asso-

ciated companies were largely defunct by the 1990s. However, the reemergence of

connectionist approaches can be seen during the 1980s and, generally, as a continua-

tion of computing by taking inspiration from biology.

While the work of McCulloch and Pitts as well as Rosenblatt provided some

biological grounding for artificial intelligence, Hubel and Wiesel provided a concrete

model for how the visual processing system operates. In their work on the cat visual

cortex, they demonstrated that certain cells are sensitive to points over specific regions

of the retina, i.e., the receptive fields of Rosenblatt [Rosenblatt, 1958]. Further along

in the visual processing system, other cells are sensitive to lines (collections of points)

and still others to collections of lines or specific motions [Hubel and Wiesel, 1965]. Put

simply, biological visual processing systems are hierarchically organized and construct

complex structures from simpler primitives.

Fifteen years later, a more concrete structure for a generic connectionist architec-

ture inspired by the visual processing system as experimentally determined by Hubel

and Wiesel emerged—the work on the Neocognitron by Fukushima [Fukushima, 1980].

Additionally, evidence and techniques that allowed neural networks to be incremen-

tally modified through error backpropagation to represent an arbitrary input–output

relationship [Rumelhart et al., 1988] reignited significant interest in connectionism.

22

Nevertheless, approaches were plagued by the so-called vanishing gradient problem

where the gradient decreases exponentially with the number of layers in a network.

In result, the features used by an architecture like the Neocognitron had to be hand

selected and could not be generally learned.

A number of approaches towards dedicated neural network computers or hard-

ware to enable neural network computation in the 1990s [Fakhraie and Smith, 1997].

However, the lineage of Hubel and Wiesel to Fukushima and general research into con-

nectionist approaches to artificial intelligence were maintained and furthered during

this time by the so-called Canadian mafia: Yann LeCun, Geoff Hinton, and Yoshua

Bengio. LeCun provided prominent work into convolutional neural networks, i.e.,

neural networks inspired by the visual processing system that use convolutional ker-

nels as feature extractors (whose size effectively defines a receptive field), and their

training [Lecun et al., 1998]. Similarly, Hinton provided a means of training another

type of deep neural network—a deep belief network composed of stacked Restricted

Boltzmann Machines—using a layer-wise approach [Hinton et al., 2006]. This work,

and followup work in this area, provide a means of avoiding the vanishing gradient

problem through connectivity restrictions or layer-wise training and demonstrated

the capabilities of connectionist approaches to solve difficult problems: image classi-

fication and scene segmentation.

In consequence, these successes, and numerous ones since, have created a dra-

matically increased and resurgent interest in machine learning. However, the general

utility of machine learning is not in its ability to solve a specific niche problem, e.g.,

image classification. Machine learning provides a general class of substrates, neural

networks and their variants, for automatically extracting some structure in presented

data. This contrasts dramatically with traditional, algorithmic computing where a

complete understanding of a specific problem is required. Instead, machine learning

23

Table 2.1: Related work on neural network software and hardware

Category Work Citation

Software Libraries

FANN [Nissen, 2003]
Theano [Al-Rfou et al., 2016]
Caffe [Jia et al., 2014]
cuDNN [Chetlur et al., 2014]
Torch [Collobert et al.,]
Tensorflow [Abadi et al., 2015]

Spiking Hardware SpiNNaker [Khan et al., 2008]
TrueNorth [Preissl et al., 2012]

Hardware Architecture

RAP [Morgan et al., 1992]
SPERT [Asanović et al., 1992]
NPU [Esmaeilzadeh et al., 2012b]
NPU–Analog [Amant et al., 2014]
DianNao [Chen et al., 2014a]
DaDianNao [Chen et al., 2014b]
NPU–GPU [Yazdanbakhsh et al., 2015]
PuDianNao [Liu et al., 2015]
SNNAP [Moreau et al., 2015]
TABLA [Mahajan et al., 2016]
DNNWEAVER [Sharma et al., 2016]

FPGA Hardware HMAX-FPGA [Kestur et al., 2012]
ConvNet [Farabet et al., 2013]

can be viewed as a soft computing paradigm where approximate or inexact solutions

are served for problems with no known algorithmic (or non NP-hard) solution is

currently known.

2.2 Neural Network Software and Hardware

The long tail of neural network research and modern, resurgence interest has resulted

in a wide array of historical and recent software and hardware for performing and

accelerating neural network computation. Table 2.1 shows a summary of related

work discussed in this section. Critical to the contributions of this thesis, prior

implementations focus on machine learning as the underlying application.

24

2.2.1 Software

Machine learning software can be divided into roughly two categories:

• Software specific for machine learning

• Software for scientific (or mathematical) computation

In the former space, the Fast Artificial Neural Network (FANN) library is a repre-

sentative example [Nissen, 2003]. This is a C library (with an optional C++ wrapper)

that allows for computations with arbitrary multilayer perceptron neural networks

and training using backpropagation algorithms. However, due to the time during

which FANN was developed (i.e., 2003), this software library was optimized for a

single CPU implementation—specifically with the use of software pipelining.

More recent versions of dedicated machine learning software include Caffe [Jia

et al., 2014] and Tensorflow [Abadi et al., 2015]. In contrast with FANN, both of

these libraries target deep learning specifically, i.e., convolutional neural networks or

deep neural networks. In light of their much more recent development than some-

thing like FANN, they both target the predominant architecture for training neural

networks—GPUs. GPU programming, while initially archaic in the sense that a user

had to translate their program into an explicit graphics language, e.g., OpenGL. How-

ever, NVIDIA introduced CUDA, a C/C++-like language that enables more straight-

forward programming on the parallel architecture of a GPU, in 2007. The natural

parallelism inherent in machine learning workloads makes GPUs a prime target for

bearing the computational burdens of both feedforward inference and learning. To

further bolster their support of this, NVIDIA introduced cuDNN, deep neural net-

work (DNN) extensions to its existing CUDA library for programming GPUs [Chetlur

et al., 2014].

Alternatively, though the boundary is somewhat fuzzy, more generic scientific

computing packages can be used to describe machine learning algorithms. These

25

libraries include Theano [Al-Rfou et al., 2016] and Torch [Collobert et al.,]. Similarly,

both of these provide support for targeting both CPU and GPU backends.

Nevertheless, all of these existing software implementations treat machine learning

as the underlying application as opposed to just one more way of approaching a

problem.

2.2.2 Hardware

Hardware implementations can be broadly broken down along the guidelines of Lighthill’s

A (advanced automation) and C (cognitive neuroscience) classes. Class A imple-

mentations involve artificial neural networks which includes multilayer perceptron

and convolutional/deep implementations. Class C generally uses a spiking model

for inter-neuron computation. However, while Class C can obviously be utilized for

neuroscience simulations, these implementations often merge into Class A or B and

attempt to provide some utility for a specific application domain.

Biologically-inspired approaches include SpiNNaker [Khan et al., 2008] and IBM’s

recent entry, TrueNorth [Preissl et al., 2012]. Both use spiking neural network models

and provide a more biologically-accurate view of neural network hardware. Neverthe-

less, the general utility of these types of systems for Class A tasks is widely disputed,

e.g., in comments by Yann LeCun to the New York Times [Markoff, t B1]. Specifically,

artificial neural networks, like convolutional neural networks, tend to outperform spik-

ing models on the same tasks. While this does not preclude their use for Class A

tasks, most of these systems are relegated to Class C.

Artificial neural network hardware accelerators were explored in the 1990s, specifi-

cally with the Ring Array Processor (RAP) [Morgan et al., 1990, Przytula, 1991, Mor-

gan et al., 1992] and SPERT [Asanović et al., 1992, Wawrzynek et al., 1996]. RAP

utilized a collection of digital signal processors (DSPs) connected via a ring bus.

Individual neurons can then be assigned to specific DSPs with broadcast communi-

26

cation for inference or learning happening over the ring bus. SPERT and SPERT-II

were both very long instruction word (VLIW) machines and were evaluated on neu-

ral network inference and learning applications demonstrating dramatic performance

improvements over IBM and SPARC workstations. Similarly, the performance (i.e.,

speed) of these systems actually improved with increases in neural network layer size.

Put differently, as more work is exposed to the underlying hardware, its performance

scales accordingly. This is a favorable quality that demonstrates the soundness of the

architecture and a feature that we have tried to replicate with the work presented in

this thesis.

Following RAP and SPERT there was little interest in hardware for connectionist-

style neural networks until the modern, resurgent interest in deep learning. In 2012,

Hadi Esmaeilzadeh demonstrated the use of classical artificial neural networks, neural

processing units (NPUs), to approximate hot regions of code for significant power–

performance savings [Esmaeilzadeh et al., 2012b]. Follow-up work extended this

to analog NPUs [Amant et al., 2014], as accelerators on a GPU [Yazdanbakhsh

et al., 2015], and as a dedicated NPU coprocessor for embedded applications called

SNNAP [Moreau et al., 2015]. The context and motivation of this work was entirely

focused on the use of NPUs to enable function approximation and developing one type

of hardware infrastructure, neural network accelerators, to enable hardware-backed

approximation of arbitrary regions of code. This is similar to related work by the

same authors on hardware modifications that allow for general approximate compu-

tation and storage using multiple voltage levels [Esmaeilzadeh et al., 2012a]. All of

this work is intended to operate using a language which allows for approximate types

like EnerJ [Sampson et al., 2011].

Neural network hardware, primarily focused on deep/convolutional networks, be-

gan to reemerge recently. This work has generally taken the form of architecture

27

research or dedicated hardware accelerators, sometimes implemented using FPGAs

or as ASICs. Specifically, FPGA hardware implementations have been developed

for both hierarchical model and X (HMAX) [Kestur et al., 2012] and convolutional

neural networks [Farabet et al., 2013]. Related attempts have been made to sim-

plify the design process of emitting an implementation of a specific neural network

accelerator into a hardware substrate, e.g., an FPGA. TABLA (correctly) identifies

gradient descent as the common algorithm across which a multitude of statistical

machine learning approaches can be implemented [Mahajan et al., 2016]. TABLA

then provides a variety of templates that can be stitched together on an FPGA to

create a machine learning accelerator. Similarly, DNNWEAVER provides templates

for creating an FPGA implementation of a machine learning accelerator, but strictly

for feedforward inference [Sharma et al., 2016].

Dedicated ASIC implementations have also been provided by the DianNao accel-

erator [Chen et al., 2014a] and its followup variants DaDianNao [Chen et al., 2014b]

and PuDianNao [Liu et al., 2015]. Note the reported performance of these implemen-

tations match or moderately exceed the performance of machine learning executing

on a GPU. However, these implementations are several orders of magnitude more

energy efficient.

In summary, the space of neural network hardware is extremely packed and com-

petitive due to recent resurgent interest in machine learning. However, all of these

systems view machine learning as the underlying application. In light of the motiva-

tions of this thesis, we view machine learning hardware as one component of systems

that enable and expose machine learning acceleration as a generic component of ar-

bitrary applications that would not traditionally use machine learning techniques.

28

Software Hardware

Generality

Speciality
FANN

Caffe

TensorFlow

Torch

Theano

TrueNorth

SpiNNaker

DianNao

PuDianNao

DaDianNao

NPU

NPU–Analog

NPU–GPU
SNNAP

TABLA

DNNWEAVER

RAP

SPERT

HMAX-FPGA

ConvNet

cuDNN

X-FILES

DANA

T-fnApprox

Figure 2·3: Related software and hardware work

2.2.3 Context of this dissertation

The pertinent question then becomes, how does the work in this thesis sit within

the crowded space of machine learning hardware and software? Figure 2·3 provides

some rough guidance on where we view early work on T-fnApprox as well as DANA,

our neural network accelerator architecture, and X-FILES, all the components of

the system that enable access to DANA. This related work is presented on two-

dimensional axes showing, roughly, where each piece of work fits within software and

hardware extremes and the speciality or generality of its intended use.

29

Software generally falls into categories of strictly used for neural network compu-

tation (FANN, Caffe, and TensorFlow) and more general-purpose scientific computing

packages (Torch and Theano). Recently, NVIDIA’s cuDNN has provided tight, fast

support for machine learning on one or more GPUs and has bridged the hardware/-

software gap between software neural network libraries and GPU backends. Conse-

quently, Caffe, TensorFlow, Torch, and Theano all support cuDNN bringing them

closer to hardware acceleration.

All remaining work discussed falls into the hardware hemisphere, but provides

variations on both speciality of use and software support. Biologically-inspired ap-

proaches, SpiNNaker and TrueNorth, are viewed as highly specialized models of bio-

logical systems to maintain consistency with Lighthill’s Class C grouping. Similarly,

dedicated ASIC approaches, like DianNao and its variants are similarly restricted in

their ability to adapt to the constantly changing landscape of machine learning tech-

niques. FPGA approaches, like HMAX and ConvNet, are relatedly narrow in scope.

RAP and SPERT and provided due to their historical context, but both provide

software infrastructure for programming these processors.

NPU and its variants and SNNAP both push towards the generality end of the

spectrum in that the focus of this work is not on neural network acceleration, but

using neural networks to augment traditional computation. However, the focus of

this work is specific to function approximation and there are certain problems that

are either not amenable to approximation or that are not uniquely suited to being

viewed as an input–output relationship.10 T-fnApprox lives in the same domain as

NPU work, but attempts to push the bounds on the granularity of approximation

10It is interesting to contrast this approach with Google Deepmind’s Neural Turing Machine work
where neural networks (or LSTMs) are augmented with dedicated read/write memory to better learn
an algorithm [Graves et al., 2014]. In this scenario, an architecture that includes dedicated memory
can potentially provide a much better “understanding” of an input output relationship through an
algorithm as opposed to a function.

30

suitable using neural networks as function approximators. X-FILES/DANA work

differs from NPU and its variants in that we are agnostic of the way in which the

neural network hardware is used, but can definitely support neural network-backed

approximation approaches.

DNNWEAVER and TABLA provide viable ways forward to provide hardware-

based acceleration of machine learning approaches without being tied to a specific

architecture like with ASIC or FPGA implementation work. These techniques are

similarly agnostic to the way in which the hardware is used, but we strive to provide

a complete system that ties both hardware and software together with user and super-

visor software. In effect, X-FILES work could be interfaced with any of these existing

approaches, hence the separation of X-FILES and DANA contributions in Figure 2·3.

X-FILES try to span the gap between software/hardware and speciality/generality,

while DANA is one example of an accelerator backend.

DANA does bear a strong similarity to existing neural network accelerator archi-

tectures that use a PE model.11 However, the dominant contributions of this work

come in how DANA and our hardware/software infrastructure, X-FILES, work to-

gether to provide neural network computation as a fundamental primitive of both

user and supervisor software.

11A PE model generally follows the inclusion of some number of PEs that can provide the function-
ality of one or more neurons. Computations are then scheduled on these PEs to “execute” a neural
network provided as a raw data structure describing a neural network or as explicit instructions that
the PEs execute.

31

Chapter 3

T-fnApprox: Hardware Support for

Fine-Grained Function Approximation

using MLPs

Approximate computing trades off precision for better performance or decreased en-

ergy. Broadly, this moves computation towards using “just enough” resources as

opposed to the blunt underlying data types of microprocessors—integer or floating

point types of some fraction or multiple of the word length. One approach to approx-

imate computing allows for finely grained precision of operations using the amount

of precision actually required for a specific operation. Alternatively, neural networks

have been empirically shown to act as approximate computing substrates where a

neural network approximates precise execution over some region. Specifically, neural

networks have been used to approximate functions or regions of code [Esmaeilzadeh

et al., 2012b, Amant et al., 2014, Moreau et al., 2015, Yazdanbakhsh et al., 2015] from

a diverse range of applications, e.g., those in the AXBENCH approximate computing

benchmark suite [Yazdanbakhsh et al., 2016], as well as entire applications [Chen

et al., 2012].

Furthermore, neural networks have been mathematically shown to be both univer-

sal approximators by Cybenko [Cybenko, 1989] and Hornik [Hornik, 1991]. Addition-

ally, Siegelmann and Sontag demonstrated that RNNs1 are Turing complete [Siegel-

1RNNs are a type of neural network with cycles. One specific example includes Long Short Term
Memory (LSTM) networks [Hochreiter and Schmidhuber, 1997]. RNNs contrast with multilayer
perceptron or traditional artificial neural network where the communication of data is either strictly

32

mann and Sontag, 1995]. Hence, neural networks can be viewed as blank substrates

on top of which complicated and difficult problems can be mapped via a learning

algorithm.

However, identifying regions of code capable of being approximated is an open

problem. Revisiting the ontology of Section 1.1.1, these regions of code fall into

the SNN−A subset of G. At present, this is generally solved with user annotation

of possibly approximable code followed by a compiler decision as to whether or not

a specific region of code is frequently executed (i.e., the code is “hot”) and safe

to approximate. The compiler then replaces the original code region with a neural

network executed in software or offloaded to hardware. With this work, we attempt to

circumvent the problem of hot code approximation by approximating code assumed

to be hot, i.e., shared library functions. Specifically, we focus on approximation of

transcendental functions in the GNU C Library.

3.1 Function Approximation

Function approximation has a long history. For as long as numerical computation has

been used (e.g., computing artillery firing tables), some approximation of complex

functions has been necessary. Broadly, function approximation can be viewed as

using a limited amount of information to represent a more complex system. From

a mathematical view, this can be viewed from at least two contrasting perspectives:

representation by a Taylor Series and Harmonic Analysis.

A Taylor Series represents a function as an infinite sum of functions computed us-

ing successively higher derivatives of the function. This type of approach can provide

very accurate local approximation, but diverges dramatically from the true function as

the domain of the approximation increases. Alternatively, Harmonic Analysis repre-

feedforward for inference or feedback for gradient descent learning.

33

sents functions as a summation of basis sets. One specific type of Harmonic Analysis,

Fourier Analysis, represents functions by a summation of sines and cosines. Differing

from a Taylor Series approximation, a Fourier Series approximation captures global

behavior (e.g., the average value of a function) at the expense of local, high frequency

information.

Both of these approaches have implied drawbacks when a designer attempts to

produce more accurate approximations. A Taylor Series approximation requires more

terms in the Taylor series to produce a more accurate approximation over a larger

domain. Similarly, a Fourier Series approximation requires the inclusion of higher

frequency components to improve approximation accuracy. From this perspective, a

Taylor Series seems to provide limited utility as rarely are functions approximated

over tight domains.

Neural networks, while shown to be general purpose approximators, demonstrate

the same Taylor Series-like deficiencies. Namely, neural networks are highly accurate

over a local region, but require more resources (neurons) to provide an acceptable

result over a large domain.2 For approximation of operations with full-width integer

and floating point data types, approximation over a large domain is a critical necessity.

Nevertheless, there exist techniques that extend approximation from a limited

domain to an unlimited domain. In the following subsection we provide a detailed

explanation of Unified CORDIC, an existing numerical technique for function approx-

imation. Using the approach of Unified CORDIC we are then able to apply neural

network approximation of certain mathematical library functions to unbounded input

domains.

2Granted, this approach could potentially be lessened by using activation functions composed of
a basis used in Harmonic Analysis with unknown exacerbations to the non-convexity of the learning
problem.

34

3.1.1 CORDIC and Unified CORDIC

CORDIC, developed by Jack Volder while at Convair, provides an efficient way to

compute certain “difficult” mathematical functions using shifts, adds, and a table

of inverse tangents or inverse hyperbolic tangents [Volder, 1959]. This algorithm is

generally useful for small microprocessors that do not have ready access to a multi-

plier but need to compute complex functions, e.g., its original usage case was in an

airplane guidance computer. John Walther extended the algorithm in the form of

Unified CORDIC supporting additional functions and accepting inputs on arbitrary

domains [Walther, 1971]. Unified CORDIC handles arbitrary domain inputs by iden-

tifying and exploiting the fact that a bounded domain of the function can be used to

describe its unbounded counterpoint.

As a brief example, consider the sine and cosine functions shown in Figure 3·1.

Intuitively, sine and cosine are redundant due to their periodicity—knowing one sine

or cosine period gives us full knowledge of the complete signal. However, this initial

approximation can be further simplified such that we only need to know a quarter

period of sine or cosine to reconstruct them. This quarter period of sine or cosine

can then be pieced together (with use of inversion) to completely reconstruct sine or

cosine for unbounded domain inputs. Table 3.1 shows these identities mathematically

in addition to identities for logarithmic and exponential functions.

In effect, the domain agnosticity of Unified CORDIC exploits the fact that for

some mathematical functions exact knowledge over a limited domain can be used to

reconstruct the entire function. The problem of function approximation with some-

thing like CORDIC then reduces to identifying and using a simple mathematical

transformation to move the input onto the known domain, apply the function, and

scale the output. Naturally, these aforementioned simple transformations need to be

composed of operations of complexity comparable to the approximation technique

35

−2π 0 2π

−1

0

1

0 π
2

π 3π
4

2π 0 π
4

π
2

−2π 0 2π

−1

0

1

0 π
2

π 3π
4

2π 0 π
4

π
2

Figure 3·1: Sine and cosine functions (left) decomposed into periods
(center) and quarter periods (right). Using the identities in Table 3.1,
the quarter periods can be pieced together to compute the output of
an unbounded domain input.

Table 3.1: Identities from Unified CORDIC [Walther, 1971] to convert
full-domain inputs onto finite domains d with scaling factors q for the
original CORDIC algorithm [Volder, 1959].
[Eldridge et al., 2014] © 2014 Association of Computing Machinery, Inc. Reprinted by permission.

Identity Domain

sin(d+ qπ
2

) =


sin(d) if q%4 = 0
cos(d) if q%4 = 1
− sin(d) if q%4 = 2
− cos(d) if q%4 = 3

0 < d < π
2

cos(d+ qπ
2

) =


cos(d) if q%4 = 0
− sin(d) if q%4 = 1
− cos(d) if q%4 = 2

sin(d) if q%4 = 3

0 < d < π
2

log(d2q) = log(d) + q log(2) 1
2
≤ d < 1

exp(q log 2 + d) = 2q exp(d) |d| < log 2

36

Table 3.2: Identities and steps for Unified CORDIC. Each input, x,
is decomposed into a function of d, which lives on a limited domain of
Table 3.1, and q, a scaling. With d and q known, the limited domain
Unified CORDIC function, F ′, can be used to compute t, the output
for the limited domain input. Post-scaling then converts t to the actual
output y using q.
[Eldridge et al., 2014] © 2014 Association of Computing Machinery, Inc. Reprinted by permission.

F (x) sinx, cosx expx log x

Identities x = f(d, q) x = qπ
2

+ d x = q log 2 + d x = d2q

Scaling Steps
1: determine q q = b2x

π
c q = b x

log 2
+ 1c q = dlg xe

2: determine d d = x− qπ
2

d = x− q log 2 d = x >> q
3: compute t t = F ′(d) t = F ′(d) t = F ′(d)
4: post-scale d y = t y = t << q y = t+ q log 2

and significantly less than the original function.

Table 3.2 shows the scaling steps employed by Unified CORDIC for selected tran-

scendental functions. This procedure broadly involves the determination of two val-

ues, d and q. Here, d is the input scaled to the appropriate domain for the limited

domain Unified CORDIC function, F ′, and q is a scaling. Note the use of strictly

simple operations, namely shifts, additions, and multiplication with a constant.3

In Table 3.2, the compute step is just an accurate representations of the tran-

scendental function on the domain specified in Table 3.1. Alternatively, this accurate

representations can be replaced with an approximate version. In the following section

we describe our approach that uses a neural network trained to compute F ′ instead

of the original Unified CORDIC function.

3.2 A Fixed-topology Neural Network Accelerator

To evaluate this approach, we designed a neural network accelerator in Verilog based

around the previously described CORDIC algorithm. For the sake of simplicity and

3This technically breaks the guarantee of CORDIC that it does not require any multiplications.
However, for our purposes, multiplication with a constant is still inexpensive relative to the types
of functions being approximated.

37

the fact that the domains of the limited domain functions that we approximate are

not complex, we use small neural networks as our approximators. Specifically, we

only use two-layer neural networks, like the one in Figure 2·2.4 These networks

are trained offline to approximate limited domain versions of various transcendental

functions and then used, with the scalings in Table 3.2, to replace their equivalent,

accurate functions in the GNU C Library. We deem this architecture static in that

the underlying units that perform the operations of a single MLP neuron are laid out

spatially and not time multiplexed.

The general architecture of this system is shown in Figure 3·2. The architecture

consists of a tightly coupled neural network accelerator with pre/post-scaling units

and a statically laid out MLP neural network. Figure 3·2 shows an accelerator for

a specific neural network with three hidden nodes and one output node. Inputs are

written directly from CPU registers and outputs are written to CPU registers. All

computation occurs in fixed point to avoid the unnecessary overhead of a floating

point unit.5

Figure 3·2 additionally shows the internal architecture of a single neuron. This

Processing Element (PE) needs to perform two specific functions. Specifically, each

neuron must compute an inner product of an input and weight vector (Equation 5.1)

and apply a sigmoid function (Equations 3.2), σ:

y =
∑

∀ weights

weight× input (3.1)

σ =
1

1 + e−x
(3.2)

4The input layer is not counted towards the number of layers as it is passthrough and does not
perform any computation.

5There is general consensus in the literature that floating point arithmetic is not needed for neural
network/machine learning computation [Savich et al., 2007]. Qualitatively, the large dynamic range
of floating point is generally not needed due to the squashing nature of neural network activation
functions.

38

CPU

nn-based accelerator

hd
de
n0

hi
dd
en
1

hi
dd
en
2

ou
tp
ut
0

ff ff ff

weights

ctrl*>>

+ ff ϕ

inputs[2:0] valid_in

valid_outoutput

output_0

ff

postscale

pipeline register

combinational logic

ϕ 1 cycle sigmoid unit

flip-flopff

ff

ffff

1 cycle postscalepostscale

2 cycle prescaleprescale

prescale ff

ff

Figure 3·2: Overview of the T-fnApprox hardware architecture. This
consists of a fixed topology neural network accelerator attached to a
microprocessor and capable of register-based transfer of data. The
accelerator is composed of pre-scale and post-scale units in addition
to a number of neurons. Each neuron applies an activation function to
a weighted sum of its inputs.
[Eldridge et al., 2014] © 2014 Association of Computing Machinery, Inc. Reprinted by permission.

The inner product is computed serially using a multiplier and a shifter (to realign

the binary point in the fixed point representation) that is accumulated in a register.

Once all the inputs and weights have been consumed, the activation function is applied

using a seven-part piecewise linear approximation of a sigmoid function. This specific

choice of piecewise linear approximation was used because it aligns with the existing

Fast Artificial Neural Network (FANN) library [Nissen, 2003].

The latency and throughput for a single neuron is a function of the number of

inputs to the neuron, Ni. These are moderated by the fixed latency of the pipeline

stages. Equations for the latency and throughput of a single neuron are defined as

follows:

latency = 6 +Ni − 1 = Ni + 5

throughput =
1

Ni + 5

(3.3)

The entire architecture depicted in Figure 3·2 is fully pipelined. Therefore, the

latency and throughput of a given neural network can be defined in terms of the

number of inputs, Ni, the number of neurons in the hidden layer, Nh, and the latency

39

of the scaling stages. Equations for the latency and throughput of the entire two-layer

neural network are provided below:

latency = Ls + (Ni + 5) + (Nh + 5)

throughput =
1

max(Ni, Nh) + 5

(3.4)

Using this accelerator architecture, we then investigated how the various param-

eters of the accelerator affected both the explicit output quality of the approximated

functions in addition to how this affected the output quality of benchmark applica-

tions.

3.2.1 Approximation capability

First, we analyzed the potential capabilities of this accelerator to approximate tran-

scendental functions over a limited domain. Due to the high dimensional design space

of neural network topologies (number of layers, number of neuron per layer, number of

fractional bits in the fixed point representation), we opted to use a fixed topology for

this initial analysis. Our topology was a two-layer neural network with seven hidden

nodes and nine fractional bits. The nature of the transcendental functions transform-

ing one input to one output determined the remainder of the topology, namely that

there was one input neuron and one output neuron. We then trained a software neu-

ral network with the specified topology using gradient descent learning for different

randomly initialized weights uniformly distributed between [−0.7, 0.7].

Table 3.3 shows the results of this analysis for 100 randomly initialized networks.

We report the expected, median, and minimum mean squared error (MSE) for certain

transcendental functions. It is important to note that these neural networks are

approximating the actual functions, hence the need for a quality metric like MSE.

This relatively simple neural network is capable of approximating these transcendental

functions to “low” MSE values over limited domains. Nevertheless, the notion of low

40

Table 3.3: Expected, median, and minimum mean squared error
(MSE) for 100 two-layer, seven-hidden node, nine-fractional bit mul-
tilayer perceptron neural networks trained to execute transcendental
functions.
[Eldridge et al., 2014] © 2014 Association of Computing Machinery, Inc. Reprinted by permission.

Func. Expected MSE Median MSE Minimum MSE Domain

sin 5.3×10−4 4.3×10−4 0.4×10−4 [0, π
4
]

cos 5.6×10−4 4.1×10−4 0.2×10−4 [0, π
4
]

asin 21.7×10−4 18.5×10−4 4.9×10−4 [−1, 1]
acos 19.0×10−4 16.5×10−4 5.5×10−4 [−1, 1]
exp 6.3×10−4 4.4×10−4 1.0×10−4 [− log 2, log 2]
log 12.1×10−4 8.4×10−4 0.4×10−4 [1

2
, 1)

MSE depends on how this function is being used in a specific application. As a

qualitative example, approximate transcendental functions may be suitable for image

processing but not for a fire control system.

Interestingly, Table 3.3 hints at some notion of “difficulty” of approximated func-

tion. Specifically, sine and cosine can be better approximated than arcsine and arc-

cosine, though the domains are not the same for the approximated region.

For sine, cosine, and the logarithm and exponentiation functions, Figure 3·3 shows

the plotted accuracy of these functions using the architecture described previously in

Figure 3·2. The power function is computed using a serial application of the logarithm

and exponential functions as shown in the following identity:

ab = eb log a (3.5)

Qualitatively, the approximated functions match the shape of the original func-

tions and the error scales with the magnitude of the output. This relative error occurs

as a result of the scaling procedure shown in Table 3.2. While this may seem like a

poor result, this is the existing, and desired, behavior of any floating point arithmetic

representation.

41

−5 0 5

−1

0

1

x

f
(y

)

cosx

−5 0 5

0

200

400

x

expx

0 2 4 6

−2

0

2

x

log x

−5 0 5

0

20

40

60

x

f
(y

)

pow(2, x)

−5 0 5

−1

0

1

x

sinx

10−3

100

103

S
q
u
ar

ed
E

rr
or

10−3

100

103

S
q
u
ar

ed
E

rr
or

Function Value (left axis) Squared Error (right axis)

Figure 3·3: Approximated output and squared error of different tran-
scendental functions approximated using a neural network. Squared
error is plotted on a log scale using the right y axis. The use of
pre/post-scaling causes the error to scale with the magnitude of the
function output.
[Eldridge et al., 2014] © 2014 Association of Computing Machinery, Inc. Reprinted by permission.

42

3.3 Evaluation

We then evaluate a hardware implementation of the previously described neural net-

work accelerator architecture on grounds of energy and performance. Our primary

comparison point is against a traditional implementation using floating point arith-

metic and the GNU C Library.

3.3.1 Energy efficiency

With this work, we leverage the decrease in the accuracy of these transcendental

functions to increase the energy efficiency of applications. To do this, we pushed

a Verilog description of the neural network accelerator for different configurations

through a Cadence toolflow using the NCSU FreePDK 45nm predictive technology

model [Stine et al., 2007].

As our approximation trade off introduces an element of accuracy we define an

error metric that incorporates the MSE of a given configuration, energy delay error

product (EDEP):

EDEP = energy× latency in cycles

frequency
×MSE (3.6)

The neural networks with minimum EDEP were found to have one hidden node

and six bits of fixed point precision. Exponential and logarithmic functions used

three hidden nodes and seven bits of fixed point precision. Table 3.4 shows the

area, maximum operating frequency, and energy per operation (one feedforward pass

through the neural network). Surprisingly, these networks are incredibly simple and

have extremely limited precision compared to traditional computation in a modern

computer architecture (32 or 64 bits for integer math and 24 or 53 for floating point).

As mentioned previously, two neural networks in series, one configured to perform

an exponential function and another configured to perform a logarithm, can be used

43

Table 3.4: Neural network accelerator hardware parameters with min-
imum energy delay error product (EDEP) for sin, cos, log, and exp.
Data is from a placed and routed design in a 45nm predictive technol-
ogy model [Stine et al., 2007].
[Eldridge et al., 2014] © 2014 Association of Computing Machinery, Inc. Reprinted by permission.

Function Topology Precision Area (um2) Freq. (MHz) Energy (pJ)

cos, sin 1× 1× 1 6-bit 1259.50 337.38 8.30
exp, log 1× 3× 7 7-bit 3578.50 335.80 24.81

Table 3.5: Mean squared error (MSE) and energy consumption of our
neural network accelerated version of transcendental functions.
[Eldridge et al., 2014] © 2014 Association of Computing Machinery, Inc. Reprinted by permission.

Function Topology MSE Energy (pJ)

cos 1× 1× 1 9.38×10−4 8.30
exp 1× 3× 7 1.68×10−4 24.81
log 1× 3× 7 1.45×10−4 24.81
pow 1× 3× 7 4.32×10−2 101.67
sin 1× 1× 1 7.37×10−4 8.30

to compute the power function via Equation 3.5. Table 3.5 shows the MSE and energy

per operation for all transcendental functions that we consider. The cost of the power

function is higher because this requires additional logic to be statically laid out and

drives up the overall energy.

3.3.2 Comparison against traditional floating point

Our primary comparison point for this work was against the traditional floating point

implementation of these transcendental functions used by the GNU C Library. We

computed the expected instruction counts for transcendental functions in the GNU

C Library using the gem5 system simulator [Binkert et al., 2011] to track executed

instructions. We used custom micro-benchmarks comprised of loops of transcendental

functions on random inputs. Instruction counts were averaged across all executions

of the loops.

Figure 3·4 shows the count of each floating point instruction used (additions, sub-

44

cos cosf exp expf log logf pow powf sin sinf

0

10

20

30

GNU C Library Transcendental Function

F
lo

at
in

g
P

oi
n
t

In
st

ru
ct

io
n

C
ou

n
t

addsd
mulsd
subsd
addss
mulss
subss

100

200

300

T
ot

al
In

st
ru

ct
io

n
C

ou
n
t

Total Instructions

Figure 3·4: Floating point and total instruction counts for transcen-
dental functions in the GNU C Library. An ss suffix denotes a single
precision operation while sd denotes a double precision one. Fractional
instruction counts occur because GNU C Library takes different code
paths based on the random input values used.

tractions, and multiplications) as well as the total instruction counts. Note, that the

total instruction counts include integer instructions. As a lower bound, and a com-

parison very favorable to the floating point implementation, we used only the floating

point instruction counts to estimate the energy requirement of each transcendental

function in Figure 3·4. Using the underlying operations required for addition and

multiplication in both single and double precision floating point in the same 45nm

predictive technology model, we computed the area, maximum operating frequency,

and energy per operation for these floating point operations. Table 3.6 shows these

results.

Figure 3·5 shows the energy consumed per transcendental function in the GNU

C Library. This power consumption, on the order of nJ, is in stark contrast to the

power consumption of the neural network approach, on the order of tens of pJ. How-

45

Table 3.6: Area, maximum operating frequency, and energy of tradi-
tional GNU C Library implementations of floating point instructions.
Suffixes of ss denote single precision and sd denote double precision.
[Eldridge et al., 2014] © 2014 Association of Computing Machinery, Inc. Reprinted by permission.

Instruction Area (um2) Freq. (MHz) Energy (pJ)

addss 635.5 388 1.00
addsd 1466.7 388 2.20
mulss 6505.3 283 35.51
mulsd 16226.5 135 80.05

cos cosf exp expf log logf pow powf sin sinf

500

1,000

1,500

2,000

2,500

E
n
er

gy
(p

J
)

Figure 3·5: Energy consumed per floating point transcendental func-
tion in the GNU C Library. This is in stark contrast to the tens of
pJ required for neural network approximated transcendental functions
(see Table 3.4) when using the fixed point neural network accelerator
of Figure 3·2.

46

Table 3.7: Energy delay product (EDP) of our neural network ac-
celerated and traditional GNU C Library execution of transcendental
functions. The neural network accelerated variant achieves a two order
of magnitude improvement in EDP.
[Eldridge et al., 2014] © 2014 Association of Computing Machinery, Inc. Reprinted by permission.

Func. EDP-NN EDP-Single EDP-Double

cos 3.44×10−19 1.89×10−17 5.54×10−17

exp 1.26×10−18 3.62×10−16 9.26×10−17

log 1.26×10−18 2.97×10−17 1.13×10−16

pow 1.05×10−17 2.29×10−16 4.32×10−16

sin 3.44×10−19 1.51×10−17 4.97×10−17

ever, a more appropriate metric is always energy delay product (EDP). Table 3.7

demonstrates that the EDP of the neural network approach provides a two order

of magnitude improvement over single or double precision floating point implemen-

tations of transcendental functions. Note that the assumptions used in computing

the energy of the floating point implementations are extremely favorable towards

the floating point implementation. Therefore, the case for low-level mathematical

approximation using neural networks is further bolstered.

Nevertheless, this is an expected result. Prior work using neural networks to

approximate functions by Esmaeilzadeh [Esmaeilzadeh et al., 2012b] was able to suc-

cessfully show energy efficiency improvements for functions with only hundreds of

instructions. The GNU C Library implementations of these transcendental functions

are of similar instruction counts.

As an additional point of comment, the comparison between floating point and

neural network hardware does not fully capture the situation introduced by approx-

imation. Specifically, accurate and approximate hardware cannot be directly com-

pared on grounds of EDP as this removes any comparison that includes the needed

accuracy of the computation. A metric that includes error, like EDEP, cannot be

used either as the quantification of error in the floating point version is either zero

47

(if floating point is the baseline) or extremely small and likely biasing the results to

always favor floating point. A slight reconciliation can be provided with the following

explanation. Floating point, as previously stated, is an extremely blunt instrument

and generally not necessary—how many computations really need 24 or 53 bits of

precision? However, floating point (or 32/64 bit integers) are the only computational

formats available. What this, and other work in the approximate computing liter-

ature, demonstrates is that there exists extreme opportunities for energy efficiency

gains by using just enough computation necessary for a given function or application.

3.3.3 Affect on application benchmarks

To provide a more holistic viewpoint of the use of this neural network accelerator

as a mathematical function approximator, we approximate transcendental functions

in several benchmarks in the PARSEC benchmark suite [Bienia, 2011] and evaluate

the overall loss in application output quality. Initially, we determined the number of

cycles that each PARSEC benchmark spent computing the transcendental functions

which we approximate. In an Amdahl’s Law-like argument, any gain that we see will

be a function of what percentage of the time a given application spends computing

transcendental functions. Table 3.8 shows the percentage of cycles as well as the

resulting normalized EDP from using our neural network accelerator.

Five of the applications we tested used floating point functions.6 Two of them,

blackscholes and swaptions, spent a significant amount of time on transcenden-

tal functions. This resulted in normalized EDP improvements of nearly 50%. For

bodytrack and canneal transcendental functions did not constitute a dominant por-

tion of their runtimes. Other applications evaluated did not use floating point tran-

scendental functions which resulted in no change in the EDP of these applications.7

6For ferret we were unable to get cycle counts using gem5.
7Any contribution of our neural network accelerator towards power consumption is negligible

compared to the rest of the microprocessor.

48

Table 3.8: Percentage of total application cycles spent in transcenden-
tal functions and the estimated energy delay product (EDP) of using
our neural network accelerator to approximate these functions. EDP
results are normalized against single precision floating point implemen-
tations. Applications in the lower division have no transcendental func-
tions and see no change in EDP. Applications are taken from the PAR-
SEC benchmark suite [Bienia, 2011].
[Eldridge et al., 2014] © 2014 Association of Computing Machinery, Inc. Reprinted by permission.

Benchmark % Total Cycles Normalized EDP

blackscholes 45.65% 0.5583
bodytrack 2.25% 0.9783
canneal 1.19% 0.9885
swaptions 39.33% 0.6191

dedup 0.00% 1.0000
fluidanimate 0.00% 1.0000
freqmine 0.00% 1.0000
raytrace 0.00% 1.0000
streamcluster 0.00% 1.0000
x264 0.00% 1.0000
vips 0.00% 1.0000

The resulting loss in application output quality was also measured. Table 3.9

shows the expected percentage error between the generated output and the expected

output for the application. The use of neural networks to approximate transcendental

functions did not result in any application failures.

3.4 Approximation and Fixed-topology Neural Network Ac-

celerators

It is important to note that our specific choice of floating point mathematical instruc-

tions for approximation was not arbitrary. We were originally tempted to approx-

imated integer operations. However, this introduces problems in that the safety of

an approximation depends on how an integer value is used. For example, an integer

value that represents a pixel is a suitable approximation target, however an address

computation is not.

49

Table 3.9: Application output mean squared error (MSE) and ex-
pected percent error (measured as the percentage difference between
the correct and actual outputs) using out neural network accelera-
tor. Benchmarks are taken from the PARSEC benchmark suite [Bienia,
2011].
[Eldridge et al., 2014] © 2014 Association of Computing Machinery, Inc. Reprinted by permission.

Benchmark MSE E[—%error—]

blackscholes 4.5×10−1 24.6%
bodytrack 2.1×10−1 29.6%
canneal 2.9×108 0.0%
ferret 1.0×10−3 2.0%
swaptions 5.6×100 36.8%

Other work in approximate computing avoids this issue by introducing approx-

imate types into programming languages, like the work of EnerJ [Sampson et al.,

2011]. By introducing explicit approximate types into the programming language,

the compiler can then verify that these values are not used improperly, e.g., that

an approximate type is not used as a memory pointer. The underlying data for

these values can then be stored in approximate memories or offloaded to approximate

hardware, e.g., undervoltaged compute or memory units [Kahng and Kang, 2012, Es-

maeilzadeh et al., 2012a, Sampson et al., 2013, Venkataramani et al., 2013] or a neural

network accelerator [Esmaeilzadeh et al., 2012b, Amant et al., 2014, Moreau et al.,

2015, Yazdanbakhsh et al., 2015].

Additionally, the user can provide application-level quality bounds that the com-

piler can use to drive the level of approximation allowed. Related work by Michael

Carbin defines techniques, employable by a compiler, to verify that certain accuracy

metrics are met [Carbin et al., 2012, Carbin et al., 2013]. Alternatively, light-weight

checks (LWCs) were shown by Grigorian to be an appropriate means to verify, at

run time, that certain acceptability criteria are enforced [Grigorian and Reinman,

2014, Grigorian et al., 2015]. Using LWCs, computation will be repeated on more

accurate or fully accurate hardware until the acceptability criteria have been met

50

or surpassed. As an alternative to hardware-based approaches, software-only tech-

niques, like loop-perforation or early termination, can be exploited to use approximate

computing techniques without hardware modifications [Rinard, 2007, Agarwal et al.,

2009, Sidiroglou-Douskos et al., 2011].

Nevertheless, an open question is, broadly, what applications can be safely ap-

proximated. Intuitively, and following the discussion of floating point as a blunt

instrument, computation should only use as much precision as needed. However, the

constraints of hardware being fixed and the quantized nature of underlying arithmetic

types forces software developers to use much more precision than is often needed, as

has been deftly identified by Venkataramani [Venkataramani et al., 2013]. It is no

wonder that benchmark applications have been demonstrated, experimentally, by

Chen [Chen et al., 2012] and Chippa [Chippa et al., 2013] to be amenable to approx-

imation techniques, using neural network accelerator hardware or otherwise.

With the work presented in this chapter, T-fnApprox, we demonstrate that less

stringent checks can be advantageous in that they dramatically reduce the EDP of

individual computations without adversely affecting the output quality of computa-

tions. While not specifically evaluated, a more heavily optimized implementation of

mathematical functions, e.g., one provided by Automatically Tuned Linear Algebra

Software (ATLAS) or Basic Linear Algebra Subprograms (BLAS), would have less

margin for improvement compared with the GNU C Library.

However, the approximate nature of this work was only one component. We also

proposed an initial version of a neural network accelerator architecture. In the taxon-

omy provided by Grigorian [Grigorian et al., 2015], T-fnApprox is a fixed connection,

fixed weight/bias accelerator.8 The fixed nature of T-fnApprox, while resulting in

the largest possible EDP gains, is not suited for general purpose neural network ac-

celeration, i.e., class SNN of our ontology. This is due to the diverse and unknown

8This is what we have referred to previously as a fixed topology accelerator.

51

nature of neural network topologies used by applications. To work for a different neu-

ral network topology, T-fnApprox requires the use of a different, statically structured

architecture for each different neural network that a user wants to use—in effect, a

new accelerator for each network. Alternatively, a large fixed connection, variable

weight/bias accelerator, is also tenable, but inefficient as PEs are underutilized.

In conclusion, while a fixed topology accelerator provides the highest possible

energy efficiency improvements for approximate computing applications, the most

general system is one that allows for variable connections and variable weights/biases.

As a result of this, followup work discussed in subsequent chapters introduces a generic

neural network accelerator architecture capable of running arbitrary neural networks

for approximate computing or other applications.

52

Chapter 4

X-FILES: Software/Hardware for Neural

Networks as First Class Primitives

Following work on T-fnApprox and motivated by work related to automatic par-

allelization [Waterland et al., 2012, Waterland et al., 2014], we developed a neural

network accelerator architecture composed of dynamically allocated PEs. This ar-

chitecture, a Dynamically Allocated Neural Network Accelerator or DANA, forms

the computational backend of a microprocessor/coprocessor system for the purposes

of accelerating neural network computation. However, the use of DANA, or any

neural network accelerator for that matter, directly interfaced with a microproces-

sor necessitates both the software/hardware intricacies of accelerator design and our

aforementioned goals of a multi-context accelerator for the ubiquitous use of machine

learning. In consequence, we diverge initially and provide a discussion of our set of

software/hardware Extensions for the Integration of Machine Learning in Everyday

Systems or X-FILES. The X-FILES extensions treat neural network computation as

a fundamental primitive of applications, like floating point computation. We defer

an exhaustive discussion of DANA until Chapter 5 in light of the fact that concepts

necessary to understand DANA are introduced in this chapter.

4.1 Motivation: Neural Networks as Function Primitives

As outlined previously, we are motivated by the increasing interest in machine learn-

ing as evidenced by emerging applications in approximate computing and automatic

53

parallelization. In these applications, machine learning is not the underlying applica-

tion, but a component of the application. While we acknowledge the subtlety of this

differentiation, said differentiation is governed by the degree of adoption of machine

learning as a computational kernel and, hence, drives the need for dedicated software

and hardware like the X-FILES extensions and DANA.

This difference can be briefly stated with an example. Machine learning is typ-

ically used for an application domain like the image labeling task of the ImageNet

dataset [Deng et al., 2009]. Image labeling, and machine learning generally, devolves

into a problem of learning and inference—a dataset is provided, a model is trained,

and that model is applied to new, unseen data. A general model of learning and

inference matches the requirements of existing components of hardware and software,

e.g., branch prediction by a microprocessor, cache prefetching by an operating sys-

tem, and malware detection by antivirus software. Here, machine learning is not the

application, but a formalized approach to learning and inference competing with a

developer-specified heuristic.

In clarification, when we state that our goal is to make hardware-accelerated

machine learning or neural network computation a general component or first class

primitive of applications we mean, broadly, exposing hardware acceleration of the pre-

eminent learning/inference technique available as a general resource to applications.

We then posit that our multi-transaction model meets the needs of these future ap-

plications and we seek to develop infrastructure, the X-FILES extensions, in support

of this model.

Figure 4·1 shows a high-level overview of a multiprocessing system. This system is

composed of N processes whose access to the underlying hardware is moderated by an

operating system (OS). Assuming that this is a virtual memory system, each process

thinks that it has complete access to all available memory and, thereby, lives in its

54

Operating System

X-FILES Software and Hardware

Multi-context NN Accelerator, e.g., DANA

Process
2

Process
1

Process
3

Process
N

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

Figure 4·1: A modern multiprocessing system is composed of pro-
cesses each made up of one or more constituent threads. These pro-
cesses, all in their own address spaces, are managed by an operating
system to allow them to execute on a hardware microprocessor sub-
strate. With a neural network accelerator in the picture, like DANA,
we define the X-FILES software/hardware extensions to encapsulate
and manage requests by processes to access a neural network accelera-
tor hardware resource.
© 2015 IEEE. Reprinted, with permission, from [Eldridge et al., 2015].

55

own address space. Each address space can be identified with its own address space

identifier or ASID indicated by the vertical boxes separating one process from another.

Each process, wants to access specific neural networks, indicated by the graphical

networks in each process’ address space. In a traditional coprocessor implementation

(e.g., a floating point unit), each process is given exclusive access to the underlying

hardware resources. However, neural network computation is markedly different from

the types of computation traditional coprocessors execute.

First, we digress and comment on a unit of coprocessor work. We define a unit

of work for a coprocessor (or neural network accelerator going forward) as a trans-

action. A transaction encapsulates the request by a user process to do some work

(e.g., a neural network transaction could be, verbally, “Compute the output of neural

network X for input vector Y and put the result in Z.”). An inference transaction

thereby includes the following components:

• A user-specified identifier indicating which neural network to use, i.e., a neural

network identifier or NNID

• A user-specified input vector to the network

• An accelerator-generated output vector

A learning transaction includes all the components of an inference transaction, but

also includes an expected output vector for each input vector and has an associated

parameter indicating the batch size of the learning operation.1 The accelerator and

the user agree on a unique way of talking about the specific transaction, i.e., the

transaction has an associated transaction identifier or TID. Note that the amount

of work encapsulated by a transaction depends on a number of parameters of the

1The batch size is the number of input–expected output vectors that will be used before updating
the weights of the neural network. A batch size of one is stochastic gradient descent—the network
is updated from the computed gradient of a single sample—while a batch size equal to the size of
the training set is gradient descent—the network is updated from the average gradient of the entire
training set.

56

transaction:

• The specific neural network, i.e., the NNID

• The type of request, e.g., inference or learning

• The parameters of the request, e.g., the batch size of a learning request

To draw a contrast, consider the equivalent of a transaction in a floating point

coprocessor—an action encapsulating a request to perform a function with one or

more floating point numbers, e.g., “Multiply A by B and put the product in C.” Such

transactions, e.g., addition or multiplication, have negligible differences in their run-

times (on the order of cycles). However, the runtimes for neural network transactions

can be dramatically different, e.g., consider the difference in runtimes of a network

with millions of neurons versus a network with tens of neurons. This dramatic varia-

tion needs to be incorporated into the design of the accelerator and its management

infrastructure. Specifically, the runtime of a transaction could outlive the context of

a given process (tens of thousands of cycles). In order to better guarantee forward

progress, the transactions should operate independently of their associated processes.

Therefore, the underlying backend needs to be multi-context.

Multi-context accelerators are intrinsically complicated because they must guar-

antee the security of the data of all simultaneously executing contexts. However, this

complex problem can be succinctly described as transaction management or the man-

agement of ASIDs, NNIDs, and TIDs. More verbosely, the job of X-FILES hardware

and software is to manage transactions (identified with TIDs) requesting access to

specific neural networks (identified with NNIDs) for multiple processes in the same or

disparate address spaces (identified with ASIDs).

57

4.2 X-FILES: Software and Hardware for Transaction Man-

agement

With Figure 4·1 in mind, the X-FILES act as an intermediary between user processes

and the operating system and the underlying hardware. In effect, the X-FILES en-

compass all modifications to a system necessary to enable and use a multi-context

backend, like DANA. In an alternative formulation, the X-FILES hardware and soft-

ware extensions enable simultaneous multithreading (SMT) of neural network trans-

actions or virtualization of an accelerator backend. Due to the hardware/software

nature of these extensions, it is useful to build from a concrete description of an

interface between a microprocessor and an accelerator.

In the past, accelerators were traditionally relegated to a bus external to the

microprocessor, like PCIe. This is a sound design decision for devices that operate on

data independently of the microprocessor or act as specialized input–output hardware,

e.g., GPUs or high bandwidth Ethernet cards. However, there is a recent general

trend towards tighter integration of accelerators with microprocessors as accelerators

begin to augment and replace work which was traditionally done by a microprocessor

datapath. Additionally, this tight accelerator integration means that the accelerator

is potentially operating on the same data of the microprocessor or data which the

microprocessor is generating or consuming. This motivates the need for participation

by the accelerator in the cache coherency protocol.

These two motivations have led to new accelerator interfaces that meet these

needs, e.g., IBM currently provides the Coherent Accelerator Processor Interface

(CAPI). Similarly, UC Berkeley provides a Rocket Custom Coprocessor (RoCC) in-

terface for their RISC-V line of open source microprocessors. We standardize on the

RoCC interface, though any interface that provides the same features (e.g., CAPI)

can be considered functionally equivalent.

58

Rocket
Custom

Coprocessor
(RoCC)

RISC-V
μprocessor

Command
Instruction
[Rs1]
[Rs2]
Rd Response

[Rd]

Busy
MachineStatus
CoreInterrupt
AcceleratorInterrupt

RoCC
Interface

L1 Data Cache

Page Table Walk

L2 Data Cache

Figure 4·2: The RoCC accelerator interface for RISC-V microproces-
sors [Bachrach et al., 2012, Vo et al., 2013, Waterman et al., 2014, Wa-
terman et al., 2015]. Data flows back and forth between a microproces-
sor and an accelerator via direct register transfer (command/response),
by requests to the L1 data cache, or uncached requests to the L2 cache.
Lines not used for data transfer are shown in the bottom half.
© 2015 IEEE. Reprinted, with permission, from [Eldridge et al., 2015].

59

Figure 4·2 shows the RoCC interface. This interface allows data to move between

the microprocessor and the accelerator through three separate channels shown in the

upper half of the RoCC interface connections in Figure 4·2:

• A command/response transfer of data from/to microprocessor registers, i.e., us-

ing RISC-V customX instructions

• Requests to read or write data from/to the L1 data cache

• Uncached reads from and writes to the L2 cache

The RoCC interface allows both tight integration of the accelerator with a running

user program via the command/response interface as well as independent operation

of the accelerator working on data local to the microprocessor (L1 data cache) or

non-local to the microprocessor (L2 cache), e.g., the instructions read by the Hwacha

vector coprocessor [Lee et al., 2014, Zimmer et al., 2016]. Obviously this can be

extended to provide additional functionality as needed, e.g., if the accelerator wanted

cached access to a higher level of the memory hierarchy. Using the unmodified RoCC

interface, we define the functionality of the X-FILES and then delve into its specific

components spanning hardware and software.

Broadly, the X-FILES encompass three specific components:

• Hardware arbitration of in-flight transactions via an X-FILES Hardware Arbiter

• A user-level application programming interface (API) for initiating and inter-

acting with neural network transactions

• Supervisor-level data structures and operating system modifications to enable

and enforce safety

In subsequent subsections, we provide details of each specific component of the X-

FILES extensions.

60

DANA AcceleratorX-FILES Hardware Arbiter

Rocket
Core

L1$

ASID

ASID-NNID
Table
Walker

Arbiter

Control

PE

Configuration
Cache

ASID NNID State

Cache
Memory

Scratchpad
Memories

PE Table
State

ASID-NNID Table Pointer

Num
ASIDs

Transaction Table
ASID TIDR VDIO

Transaction
Table

StateV NNID

Cmd/RespL1L2

Tx Input Queues

Tx Output Queues

Figure 4·3: The complete X-FILES/DANA hardware architecture in-
terfaced with a RISC-V microprocessor (Rocket). X-FILES/DANA
hardware consists of a hardware transaction manager, the X-FILES
Hardware Arbiter, and DANA, one potential backend neural network
accelerator. Data communication occurs over the Rocket Custom Co-
processor (RoCC) interface (see Figure 4·2) comprising movement back
and forth between registers (cmd/resp), the L1 data cache, and the L2
cache. Supervisor-specific components are shown in dark red .

4.2.1 X-FILES Hardware Arbiter

The X-FILES Hardware Arbiter provides the capability for a number of transactions

to be simultaneously tracked and offloaded to a backend accelerator. Figure 4·3 shows

the complete architecture of the X-FILES Hardware Arbiter interfaced with a backend

accelerator, in this case, DANA. DANA is discussed in detail in Chapter 5.

The X-FILES Hardware Arbiter consists of five components: a supervisor man-

aged ASID register, a Transaction Table, an arbiter, and input and output queues.

The ASID is managed by a supervisor process (e.g., the operating system) and the

61

Table 4.1: Explanation of X-FILES Hardware Arbiter Transaction
Table fields

Field Name Width (in bits) Notes

R Reserved 1 Table entry is in use
VDIO Valid/Done/Input/Output 4 Controls backend execution
ASID Address Space Identifier 16 Defines the address space
TID Transaction Identifier 16 Differentiates transactions

procedure and conditions for setting and changing the ASID is discussed in more detail

in Section 4.3.

The ASID is implicitly stamped on any inbound transaction interaction operation

with the X-FILES Hardware Arbiter. The TID is generated by the Hardware Arbiter

and returned to a process when it initiates a new transaction. Therefore, a transaction

is fully identified with an ASID–TID tuple which is used as a content addressable lookup

into the X-FILES Hardware Arbiter’s Transaction Table.

This Transaction Table tracks limited information about transactions executing on

the backend and contains fields shown in Table 4.1. Specifically, this table stores the

ASID and TID for a specific transaction and, through the use of VDIO bits, determines

whether or not a transaction is eligible for scheduling on the backend. The VDIO bits

specify whether a transaction is valid, done, and waiting for either input or output

data to show up in one of the input or output queues. The arbiter then chooses among

transactions that satisfy the following Boolean equations to determine eligibility for

scheduling a transaction on the backend or evictability of a finished transaction:

schedulable = V&!(I|O) (4.1)

evictable = V&D (4.2)

Any additional state necessary for the multi-context backend is expected to be stored

on and maintained by the backend accelerator. Note that there is no requirement

62

that the X-FILES backend be multi-context—the backend may be single-context or

even stateless combinational logic.

Data communication between the microprocessor and the X-FILES Hardware Ar-

biter can use any of the aforementioned command/response, cached L1, or uncached

L2 interfaces available to a backend. However, command/response register data goes

through the input/output queues. Using the user-level API, discussed in Section 4.2.3,

data is moved from microprocessor registers and entered in the input/output queues

with possible side effects to the X-FILES Transaction Table. The I and O bits of the

VDIO Transaction Table field will assert whenever the input queue is empty or the

output queue is full. By Equation 4.1, a stalled transaction waiting for input data or

space to put output data will be descheduled from the backend and rescheduled when

the stalling condition is cleared. The VDIO bits are asserted by the backend when re-

sponding to the X-FILES Hardware Arbiter following a transaction being scheduled.

Similarly, the VDIO bits are cleared by the X-FILES Hardware Arbiter, e.g., receipt

of input data clears the I bit.

Arbitration between schedulable transactions occurs in a round robin fashion.

However, we have considered (but not investigated) work-aware scheduling algorithms

to enforce some measure of fairness on backend transaction scheduling. Specifically,

the amount of work (effectively the size of the neural network requested by a transac-

tion) may be used to enforce fairness. As an example, a smaller neural network could

receive higher priority over a larger neural network. Similarly, priority could match

the niceness of the requesting process to provide lower latency to more time critical

transactions, e.g., those initiated by the operating system. This is discussed further

in Section 7.3.2.

All components of the X-FILES Hardware Arbiter were written in the Chisel

HDL [Bachrach et al., 2012] (a functional and object oriented HDL using Scala)

63

and are open sourced and available under a BSD License. This can be accessed on

GitHub [Boston University Integrated Circuits and Systems Group, 2016].

4.2.2 Supervisor data structures: the ASID–NNID Table

In terms of X-FILES software, this encompasses both modifications to supervisor soft-

ware, i.e., the operating system, as well as provisions for a user API for transactions.

The latter is discussed in the subsequent subsection. Here, we focus on modifications

to the operating system to provide safe, multi-context use of the backend accelerator.

We discuss some DANA-specific components, namely the NNID, but we attempt to

make references to how these data structures can be extended in a generic way.

The primary concern of a multi-context accelerator can be demonstrated by exam-

ining what happens on a context switch with a traditional floating point unit (FPU).

An FPU is, generally, an accelerator/coprocessor in the same context as a process

executing on the microprocessor. However, unlike straight combinational logic, e.g.,

the arithmetic logic unit (ALU), an FPU has some state, primarily, all of its floating

point registers. On a context switch, all these registers need to be saved alongside

the state of the process, i.e., inside the task struct (task struct in Linux), assuming

that the process has actually used the FPU.2 Relatedly, the registers also need to be

cleared before the new context is loaded. Otherwise, the FPU allows information to

leak from one process to another.

However, if the computations of the backend accelerator are long running, then a

multi-context accelerator makes sense assuming that the accelerator gets some benefit

from exposure to simultaneous, multi-context work. Unfortunately, this results in

2The RISC-V privileged specification has a description of how this is handled for the FPU and
generic extensions (accelerators sitting in the RoCC socket) in Section 3.1.8 [Waterman et al., 2015].
RISC-V uses a 2-bit value in the machine status (MSTATUS) register to indicate the state of the
FPU (FS bits) or extension (XS bits) allowing for one of the following states: Off (disabled), Initial,
Clean (matching the previously saved task struct), Dirty (differing from the previously saved
task struct).

64

significant additional complexity because one transaction must not be allowed to

access any information of another transaction. On the X-FILES Hardware Arbiter,

input and output data are segregated into per-transaction input and output queues.

However, this transfer of input and output data via the register interface only covers

one of the three ways that data can be communicated between the microprocessor

and the X-FILES. The others involve reads and writes via direct interfaces to the L1

and L2 caches. Put simply, the accelerator may elect to participate actively in the

cache coherency protocol.

This direct cache interface enables the backend accelerator to read or write large

amounts of information directly from or to memory. However, we must then consider

whether or not this data is provided as virtual or physical addresses. The former

depends on the context of the microprocessor being aligned with the ASID for that

data load (assuming that we’re not using a trivial operating system or bare metal

operation). Physical addresses are not, generally, available to the user process. Fur-

thermore, and much more importantly, the accelerator cannot blindly trust a physical

address given to it by a user process. The user process could be malicious and exploit

existing memory protection by using the accelerator to read regions of memory (e.g.,

cryptographic private keys) that it is not supposed to access.

To remedy this, we introduce an X-FILES supervisor data structure called an

ASID–NNID Table.3 The ASID–NNID Table, similar to a page table, provides a means

of dereferencing the location in memory of a specific neural network configuration

given an ASID and NNID.

Figure 4·4 shows an ASID–NNID Table. This table is anchored in the microproces-

sor’s memory with a base ASID–NNID Table Pointer (ANTP) which is provided to the

DANA backend by the operating system. In addition to the ANTP, the supervisor also

3Note that NNIDs are specific to DANA. However, the concept of some agreed upon identifier that
the backend can use to find a specific program or data that it needs to move forward on some given
transaction is sound. Hence, the ASID–NNID Table can be viewed generally as an ASID–data table.

65

*NN Configuration

*NN Configuration

*NN Configuration

Header

Neurons

Weights

ASID-NNID Table Ptr
*ASID-NNID *IO QueueNum NNIDs

*ASID-NNID *IO QueueNum NNIDs

*ASID-NNID *IO QueueNum NNIDs

Status/Header *Input *Output

Ring Buffers

Num ASIDs

Figure 4·4: An ASID–NNID Table that allows DANA to dereference
a given neural network configuration, identified with a neural network
identifier (NNID), for a given process which has an assigned address
space identifier (ASID). Both ASIDs and NNIDs are assigned sequentially
to allow reuse of the ASID and NNID as table indices. Additionally, each
ASID in the ASID–NNID Table has an in-memory input–output queue to
allow for asynchronous transaction initiation and data transfer.
© 2015 IEEE. Reprinted, with permission, from [Eldridge et al., 2015].

provides the number of valid ASIDs to prevent the hardware from reading memory be-

yond the last valid ASID. These fields can be seen in the overview of X-FILES/DANA

in Figure 4·3 and in Figure 4·4. For hardware convenience, both ASIDs and NNIDs are

assigned sequentially. This allows the ASID and NNID to be used as indices into the

ANTP.

A walk of the ASID–NNID Table can then be used to dereference a pointer to

some ASID-segregated data and indexed with an NNID by the backend accelerator. To

prevent additional memory exploits, each NNID table (the portion of the table indexed

using the NNID) has a known bound—the number of NNIDs (Num NNIDs in Figure 4·4).

All exceptional cases, which generate interrupts to the RISC-V microprocessor

are shown in Table 4.2. Note that only one of these, int INVREQ is specific to the

X-FILES Hardware Arbiter. The rest are all generated due to invalid operations

66

Table 4.2: Current exceptions generated by X-FILES/DANA

X-FILES or DANA Interrupt Notes

X-FILES int INVREQ New request with unset ASID

DANA

int DANA NOANTP ANTP not set
int INVASID Invalid or out of bounds ASID
int INVNNID Invalid or out of bounds NNID
int NULLREAD The next read would be reading 0x0
int ZEROSIZE The configuration has a zero size
int INVEPB Config elements per block incorrect
int MISALIGNED An L2 read is unaligned
int UNKNOWN Placeholder for future interrupts

pertaining to the ANTP. Other exceptions can, naturally, be defined by the backend,

or by different backends, as needed. When an interrupt occurs, the interrupt line

of the RoCC interface is asserted causing the RISC-V microprocessor to drop into

machine mode and deal with the interrupt. It is the responsibility of the user to

define an appropriate interrupt handler to recover (or panic) as a result of a specific

interrupt occurring, e.g., generate a segmentation fault for a process that tries to

initiate a transaction with an invalid NNID. We provide support for special requests

by the operating system to read the cause of an interrupt.

Additionally, the ASID–NNID Table provides a description for an asynchronous

memory interface to interact with a backend accelerator through in-memory ring

buffers. These per-ASID ring buffers, shown in Figure 4·4, include both input and

output ring buffers (in addition to status bits) that enable the accelerator to poll or,

more efficiently, participate in the cache coherency protocol to read transaction data

as it becomes available. These in-memory queues are not currently supported by X-

FILES or DANA hardware, but they perform a critical component of the definition

of the X-FILES extensions. These queues allow for the hardware to operate asyn-

chronously from user processes, enable much better flow control for the hardware,

and provide a framework for the mitigation of denial of service attacks by processes.

Broadly, the hardware does not have to respond or even acknowledge a (potentially

67

Table 4.3: Supervisor and user API provided by the X-FILES ex-
tensions. We additionally provide some RISC-V Proxy Kernel (PK)
specific functions and system calls that allow the user to perform the
functions of the supervisor. These functions are intended to be used for
testing during integration of the X-FILES extensions with an operating
system.

User/Supervisor Function

supervisor
old asid = set asid(new asid)
old antp = set antp(*asid nnid table entry, size)
csr = xf read csr(csr index)

user
tid = new write request(nnid, learning type, num output)
error code = write data(tid, *inputs, num input)
error code = read data spinlock(tid, *output, num output)
id = xfiles dana id(flag print)
error code = kill transaction(tid)

user (PK only)
old asid = pk syscall set asid(new asid)
old antp = pk syscall set antp(new antp)
asid nnid table create(**table, num asids, num configs)
asid nnid table destroy(**table)
attach nn configuration(**table, asid, *nn config)
attach garbage(**table, asid)

malicious) user process flooding the accelerator with requests. This is discussed in

more detail in future work in Section 7.3.3.

4.2.3 Supervisor and user API

In addition to the supervisor data structure, the ASID–NNID Table, we also define

a supervisor and user API. A full list of all components of the user and supervisor

API are documented in Table 4.3. The supervisor API is relatively sparse since the

operating system has minimal interactions with the hardware. It does, however, need

to set the ASID on a context switch or if a user process attempts to access uninitialized

X-FILES hardware. Similarly, the ANTP needs to be set and potentially changed if

the operating system ever does a reallocation of the ANTP that results in a new ANTP.

Finally, and related to the previously discussed interrupts, the operating system needs

a generic way to read a control/status register (CSR), e.g., the X-FILES CSR that

68

holds that cause of an exception.4 Reading a CSR may have possible side effects like

clearing an outstanding interrupt from the X-FILES Hardware Arbiter.

At the user level, the X-FILE API is primarily concerned with initiating and

managing transactions using direct register transfer via the RoCC interface. In this

way a transaction can be broken down into three major steps:

• Transaction initiation

• Input vector (and expected output vector in the case of a learning transaction)

transfer to the X-FILES Hardware Arbiter

• Output vector transfer to the RISC-V microprocessor

This sequence of operations can be accomplished with the new write request,

write data, and read data spinlock functions of the user API. The TID for a given

transaction is generated by the X-FILES arbiter and returned after an invocation

of new write request. This TID is then repeatedly used by the user process to

communicate data back and forth with the X-FILES arbiter. The ASID is implicit

and the user process has no notion of its ASID nor has it any way to change its ASID.

The write data function can be used by the user process to communicate both an

input vector and an expected output vector if this is a learning transaction. For

learning transactions, the use of a non-unary batch size will result in the transaction

staying in the X-FILES Transaction Table for the lifetime of the batch. A new TID

will be issued by the X-FILES arbiter for each batch.

In addition to transaction instructions, we also provide operations for inspect-

ing the hardware. Information about the hardware can be requested using the

xfiles data id function. This function, in contrast to all others, can be invoked

without a valid ASID. Additionally, the user process can voluntarily kill a transaction

4The set asid and set antp could generally be viewed as a swap of a CSR and could be imple-
mented as such.

69

with the kill transaction function.

4.3 Operating System Integration

While X-FILES hardware and software provides a supervisor API and associated data

structures, specifically, the ASID–NNID Table, these need to be properly integrated

with an operating system to be of practical use. For the purposes of this dissertation

we provide integration with two operating systems:

• The RISC-V Proxy Kernel, a lightweight kernel for running a single process and

developed by UC Berkeley [RISC-V Foundation, 2016b]

• The Linux Kernel RISC-V port [RISC-V Foundation, 2016a]

4.3.1 RISC-V Proxy Kernel

The Proxy Kernel requires limited modifications to integrate and evaluate X-FILES

hardware with an appropriate backend, e.g., DANA. Specifically, the extension bits,

(XS bits in the machine status/MSTATUS) must be set to a non-zero value. Since the

Proxy Kernel is, effectively, a uniprocessing kernel, there is no need to save and restore

the state of the X-FILES/backend as no other process will ever run.

For ease of use, we modify the Proxy Kernel with new system calls that allow a

user process to set the ASID and ANTP. This is not intended to be a final solution

(doing it this way in the Linux kernel would be inane), but these functions provide a

rough skeleton of what needs to be added to a multiprocessing operating system. By

introducing these system calls and adding functions for the creation, modification,

and deletion of the ASID–NNID Table, complete user applications can be developed

that avoid significant modifications to the Proxy Kernel.

Note, that it is beneficial to have the Proxy Kernel, and specifically the machine

mode portion of the Proxy Kernel, understand and panic when it sees an exceptional

70

case that generates a trap. We currently panic (with verbose information) on all

X-FILES/DANA-originating traps that machine mode catches. All modifications to

the Proxy Kernel are available as a patch to the RISC-V Proxy Kernel. This patch

can be accessed on the ICSG GitHub.

4.3.2 RISCV-V Linux port

The RISC-V Linux Port needs to be handled properly and we have taken great pains

to ensure that the model proposed by the X-FILES is correct, supports our multi-

transaction thesis, and that we integrate this with the kernel in a UNIX-like way.

Specifically, this requires the development of a device driver for the X-FILES Hard-

ware Arbiter specialized to the specific backend, e.g., DANA. Through this device

driver, which uses an associated ioctl, the user process can “write” a neural net-

work configuration. From the perspective of the user process, this appends that

neural network configuration to the ASID–NNID Table and returns the NNID where

that configuration is located.

However, a number of operations have to happen behind the scenes to ensure that

this operation is safe and that the memory is properly setup for X-FILES/DANA.

The device driver must first create an ASID–NNID Table if one does not exist. The

user process which initiated the ioctl write may, however, not have an associated

ASID. An ASID is then generated on the fly and will be stored with the task struct

for that user process on all future context switches. The ASID–NNID Table is modified

appropriately and the requested neural network configuration is stored in physical

memory for the NNID table associated with that user process’ ASID. The ASID–NNID

Table must exist as a physical memory data structure where all neural network con-

figurations are page-aligned. Additionally, all configurations must live on contiguous

pages if they span more than one page.5 This ensures safe, easy, and fast operation

5The default page size for RISC-V is 4KB.

https://github.com/bu-icsg/xfiles-dana/blob/master/patches/riscv-pk-xfiles-syscalls.patch

71

of the underlying hardware when performing a read or write to or from the ASID–

NNID Table. Consequently, on an ioctl write, the device driver must verify that the

user process has provided sane data, create a new entry in the ASID–NNID Table if

needed, and grab and pin enough contiguous pages where the specified neural network

configuration will live.

The importance of using pinned memory is that once the operating system gives

the hardware an ANTP, it cannot touch any of the pages associated with that during

normal virtual memory management. Without this, the operating system could pull

a page belonging to the ASID–NNID Table which would cause the hardware to read or

write some region of memory that it is not supposed to. This would likely destabilize

the entire system, but is also a security vulnerability.

Outside of the development of this device driver, the operating system needs to

take all the appropriate actions to keep whatever new state properly associated with

a process. Specifically, the task struct needs to keep track of the ASID for a given

process. We use a default value of −1 to indicate an invalid ASID (which will be

loaded into the X-FILES Hardware Arbiter on a context switch). This allows the

hardware to generate an interrupt when a user process that does not have an ASID

tries to access an accelerator for the first time. Relatedly the Linux kernel must be

modified to at least recognize the interrupts that the hardware could generate. Note,

that due to the nature of the RISC-V privileged specification, interrupts drop the

microprocessor into machine mode. The machine mode then has the ability to defer

these interrupts to be handled in a different mode, i.e., the hypervisor, supervisor

(operating system), or the user.

These modifications, while described here, are currently in the process of being

fully implemented. We comment on their progress in Section 7.3.5.

72

4.4 Summary

In summary, the X-FILES extensions define hardware and software to manage neural

network transactions within the framework of a multiprocessing operating system like

the Linux kernel. We have taken extreme pains to make certain that the model pro-

posed here is sound and accurately meets the needs of our multi-transaction model and

motivating applications in the approximate computing [Esmaeilzadeh et al., 2012b]

and automatic parallelization [Waterland et al., 2014] domains. Similarly, the de-

sign of X-FILES hardware has undergone many revisions with one notable revision

involving the complete separation of all X-FILES and backend accelerator hardware.

For this reason, the X-FILES provide agnosticity to the backend and can support

multi-context, single-context, and combinational logic backends.

However, the X-FILES forms only one part of the picture—the X-FILES expect

to have a defined and implemented backend capable of doing useful work. For this

reason, and to further evaluate the proposed work of the X-FILES, we describe in

Section 5 our implementation of DANA, a neural network accelerator suitable for

approximate computing or automatic parallelization applications and aligning with

our multi-transaction model of computation.

73

Chapter 5

DANA: An X-FILES Accelerator for

Neural Network Computation

Previously, we provided a discussion of the X-FILES, hardware and software ex-

tensions for the management of neural network transactions, i.e., requests by user

processes to access neural network accelerator hardware. However, and as previously

mentioned, the X-FILES only form one part of a complete system. A complete system

requires an X-FILES backend that provides the computational capabilities required

to make forward progress on transactions. This backend can be multi-context, single-

context, or no-context (i.e., strictly combinational logic) and this choice is left to the

discretion of the designer of an X-FILES backend. Nonetheless, we focus primarily

on multi-context usage and develop a new architecture for accelerating neural net-

work computation that interfaces seamlessly with X-FILES hardware and software

and supports our multi-transaction model of computation. Our resulting multilayer

perceptron neural network backend, DANA, demonstrates the capabilities of the X-

FILES, aligns with the needs of our motivating applications, and provides a platform

on top of which we evaluate our multi-transaction model in Chapter 6.

In the following sections we provide a more lengthy motivation for the specifics of

this DANA architecture. We then provide a full description of DANA as well as its

operation in both feedforward inference and gradient descent learning tasks.

74

Table 5.1: Taxonomy of neural network accelerators as defined by
Grigorian [Grigorian et al., 2015] and example implementations in this
space

Fixed Weights Variable Weights

Fixed Connections T-fnApprox —
Variable Connections — NPU, SNNAP

5.1 Motivation and Guidelines for a General Neural Network

Accelerator

From the existing literature, it becomes obvious that hardware architectures for ac-

celerating neural network or machine learning computation can exist along several

different dimensions. In the recent taxonomy of Grigorian [Grigorian et al., 2015],

accelerators are the outer product of the configurability of connections between PEs

and the weights of a neural network configuration.

Table 5.1 describes different variations in the possible space of neural network

accelerators. T-fnApprox, described in the Chapter 3, is a fixed-weight, fixed-

connection accelerator. This type of accelerator provides the highest energy efficiency,

but cannot be immediately applied to arbitrary neural network topologies. At the

opposite end of the configurability spectrum, both the weights and connections can

be varied to provide the highest degree of flexibility to the system. NPU work by

Esmaeilzadeh [Esmaeilzadeh et al., 2012b] is an example of this type of accelerator.

However, the NPU, and derived work like SNNAP [Moreau et al., 2015], use an

array of PEs with a compiler-programmed communication schedule that orchestrates

the movement of data and operations of PEs. In effect, the neural network accelerator

is then a special microprocessor with a very limited, yet specialized, instruction set or

domain-specific language. This introduces another point of differentiation across neu-

ral network accelerators, specifically whether or not they have an explicit instruction

set. In result, NPU and SNNAP execute what amounts to a neural network program.

75

An alternative approach, and what we explore with our DANA architecture, uses

a neural network configuration. This neural network configuration is a data structure

that describes the structure of the neural network (and similar to the approach of

Grigorian [Grigorian et al., 2015]). While the concept of a neural network program

and a neural network configuration as fungible (i.e., they are functionally equivalent),

a configuration exposes more semantic information to the hardware and potentially

allows for a more efficient utilization of the underlying hardware resources.1 Relatedly,

while a neural network program does not preclude SMT of neural networks, the use

of a neural network configuration provides a more concise structure for the units of

computation to enable accelerator multiprocessing more elegantly.

As outlined in the motivation sections of this thesis, the large first derivative of

neural network and machine learning computation can be used as an indicator of

widespread adoption of this soft computing model. We argue that machine learning

is not something relegated to its own application domain. Exposing generic learning

and inference as computational primitives provides substantial benefits to applications

in a general sense. With this in mind, we design a machine learning accelerator

architecture that naturally supports difficult hardware concepts like SMT. Hence,

the use of a neural network configuration forms one of the tenets of our architectural

design choice.

Similarly, while a fixed accelerator suited for just one specific neural network may

find use within an Internet of Things (IoT) application, neural network accelerators

need to support both variations in topology and in the weights of constituent connec-

tions. For these reasons, we extend the initial T-fnApprox architecture to support

1An equivalent comparison would be a graph processing algorithm represented as data movement
instructions between nodes or hardware for graph processing that understands how to read and
write an adjacency list. The latter approach exposes significantly more semantic information to the
processing hardware. A similar example involves the trade-offs of just-in-time (JIT) compilation vs.
ahead-of-time (AOT) compilation.

76

arbitrary topologies specified using neural network configurations.

Related to the motivating applications, approximate computing and automatic

parallelization, and either their expected wide adoption or taking the view that these

are representative of future applications that liberally incorporate machine learning,

we design DANA with the following properties:

• We optimize DANA for the temporal reuse of neural network configurations

• We make DANA multi-context and capable of executing a parameterized number

of simultaneous transactions

With regard to the former point, this builds off of the observations of Esmaeilzadeh

that approximation via neural networks should be applied to frequently used, hot

functions [Esmaeilzadeh et al., 2012b]. In effect, if the functions are hot, then the

neural network configuration will also be hot. Hence, any accelerator intended to

work in this niche area of approximation should be capable of caching neural network

configurations (or programs if the accelerator is so designed) since the approximated

functions are, by transitivity, hot. A similar argument holds for automatic paral-

lelization applications. In these applications, neural networks are used to infer the

future state2 of a microprocessor [Waterland et al., 2014].

With regard to the latter point of a need for multi-context support, this has

several motivations. First, in light of the aforementioned motivating applications,

the frequent use of neural networks as approximators or state predictors necessitates

hardware that can cope with neural network transactions being frequently generated.

Second, as machine learning becomes a generic component of applications as opposed

to the application, we envision a computational world where neural networks are used

2By state we mean the entire state of the microprocessor: registers, memory (including inputs
stored in memory), and disks. The microprocessor is then viewed from a dynamical systems per-
spective as defining a discrete transformation from the state of the system at the current time step,
tt, to the next time step, tt+1. The predictions occur from the same initial point in the state space
and, consequently, use the same neural network repeatedly.

77

by all user processes and the operating system. As a result, the hardware must be able

to cope with disparate processes simultaneously generating neural network transac-

tions. Third, the multi-context nature, while requiring significant architectural design

at the hardware and software levels as evidenced by the X-FILES work presented in

Chapter 4, exposes more parallel work to the underlying hardware accelerator. This

has the potential to improve the throughput of the accelerator in the same manner

that SMT does for modern microprocessors.

In summary, we architect DANA as an accelerator that understands neural net-

work configurations and, through the use of local caching of neural network configura-

tions, takes advantage of neural network temporal locality. Furthermore, we explicitly

architect DANA to be capable of multi-transaction operation.

5.2 DANA: A Dynamically Allocated Neural Network Ac-

celerator

DANA, an acronym for Dynamically Allocated Neural Network Accelerator, has

already been introduced with limited commentary in Figure 4·3 as an accelerator

backend for the X-FILES. Note that the dynamic allocation properties of DANA are

in reference to the dynamic allocation of its PEs. DANA is composed of six major

architectural components that are briefly listed below:

• A DANA-specific Transaction Table3

• A Configuration Cache

• An ASID–NNID Table Walker

• Control logic

• A parameterized number of PEs

3Note: this is different, but related to the X-FILES Transaction Table. More commentary follows
in the main body.

78

• Per-transaction scratchpad memories

The following subsections provide a discussion of each of these components.

5.2.1 Transaction Table

The immediate question is: why does DANA include a Transaction Table when the X-

FILES Hardware Arbiter already provides one? Recall that the X-FILES Transaction

Table only stores information about a transaction related to whether or not that

entry in the X-FILES Transaction Table is valid (the reserved/R bit), its ability to

be scheduled on the backend accelerator (the VDIO bits), and its identification (an

ASID–TID tuple). Nothing about the fine-grained state of the transaction is stored,

e.g., what is the next neuron to be scheduled.4 This aligns with the model put forth

in the discussion of the X-FILES Hardware Arbiter. Namely, if the backend (e.g.,

DANA) wants to be multi-context, it needs to introduce some architectural features

that allow state to be maintained.

For DANA, we use a Transaction Table of the same number of entries as the X-

FILES Transaction Table. The fields of DANA’s Transaction Table are broken down

into three regions: a valid bit, an NNID, and transaction state. The valid bit indicates

to DANA’s control logic that this transaction has valid data. The NNID provides

an identifier that allows DANA to traverse the ASID–NNID Table to find a specific

neural network configuration. For this reason, the NNID is DANA-specific. DANA’s

Transaction Table also records the transaction state in a long vector. While the full

contents of the state vector are not discussed herein (the curious reader can examine

the actual source HDL), the pertinent points are discussed below.

The transaction state must keep track of what work has been done and what

work needs to be done. Generally, though discussed in more detail in Sections 5.3.1

4Early versions of X-FILES/DANA had a unified Transaction Table [Eldridge et al., 2015]. During
a refactor attempting to completely separate X-FILES hardware from DANA the current division
of Transaction Tables was developed.

79

and 5.3.2, the state involves tracking what layer and what neuron within a layer is the

next to be processed. Additionally, the type of the transaction (feedforward inference

or learning with a specific batch size) dramatically changes the state transitions that

the underlying hardware goes through to move a transaction to completion. Certain

one time use checks are stored in the transaction state. These include whether or not

the transaction is eligible to be scheduled (set by the X-FILES Hardware Arbiter),

whether the specific NNID is currently cached, and derived parameters that are a

function of the current layer and neuron (pointers for data locations in the neural

network configuration).

Whenever DANA’s Transaction Table comes across a situation that requires wait-

ing for some information from the X-FILES arbiter (e.g., the transaction needs inputs,

but the input queue is empty), DANA communicates to the X-FILES arbiter to de-

schedule the waiting transaction. This type of action results in one of the VDIO bits

in the X-FILES Transaction Table being set. When the X-FILES arbiter receives an

action from the microprocessor that remedies this condition, then the transaction will

be rescheduled and re-enabled on DANA.

DANA’s Transaction Table internally arbitrates between transactions which have

work to do. The Transaction Table determines the next action to take and generates

a request to DANA’s Control Module. Once the transaction has finished execution

and all output data has been sent to an X-FILES Hardware Arbiter output queue,

DANA’s Transaction Table responds to the X-FILES arbiter causing the done (D) bit

to be set. This allows incident read data spinlock requests to succeed and data to

be sent back to the requesting process.

5.2.2 Configuration Cache

As previously mentioned, neural network configurations are stored locally in a Con-

figuration Cache. This caching allows us to exploit the temporal locality of our target

80

applications. The Configuration Cache has a parameterized number of entries, stored

in a table, corresponding to the number of configurations that can be stored at a

given time. Each entry in the cache also has a corresponding memory block where

the configuration will be stored as it is read in from the memory hierarchy of the

attached RISC-V microprocessor.

Figure 5·1 shows the structure of a neural network configuration. A configuration

is composed of four regions containing information pertaining to a different part of

the neural network:

• Global information

• Per-layer information

• Per-neuron information

• The weights

Each of these regions contains pointers to other areas that allow processing of the

neural network to proceed, e.g., the per-layer information contains a pointer to the

first neuron of a layer. DANA’s Transaction Table can then use this information to

provide a PE with the location of its specific neuron configuration. Analogously, the

per-neuron region contains pointers into the weight region so that a PE can locate

and load the weights that it needs to perform its input–weight inner product.

Similar to how a transaction can be uniquely identified with an ASID–TID tuple,

a neural network configuration can be uniquely identified with an ASID–NNID tuple.

When DANA’s Transaction Table generates a request for a specific neural network

configuration to the Configuration Cache, this request contains that ASID–NNID tuple.

The cache does a parallel comparison on all valid entries in the cache. The result

of this comparison is effectively a cache hit or miss—the requested neural network

configuration is found or not found in the list of cached entries.

81

binaryPoint
errorFunction
elementsPerBlock
totalWeightBlocks
totalNeurons
totalLayers
* firstLayer
* weights

Global Info

Weights

* neuron0-weight0
neuron0-numberOfWeights
neuron0-activationFunction
neuron0-steepness
neuron0-bias

Neuron Info

* layer0-neuron0
neuronsInLayer
neuronsInPreviousLayer

* layer1-neuron0
neuronsInLayer
neuronsInNextLayer

Layer Info

* neuron1-weight0
neuron1-numberOfWeights
neuron1-activationFunction
neuron1-steepness
neuron1-bias

neuron0-weight0
neuron0-weight1
neuron0-weight2
neuron0-weight3...

neuron1-weight0
neuron1-weight1
neuron1-weight2
neuron1-weight3...

Figure 5·1: The layout of a neural network configuration—a data
structure similar to the one used by FANN [Nissen, 2003]. Each config-
uration consists of four sections: Global Info, containing configuration
information pertinent to the entire neural network (e.g., the number
of layers), Layer Info, containing per layer information, Neuron Info,
containing configuration information about each neuron, and all the
weights. All sections and all weights for a given neuron must be aligned
on a block boundary.

82

On a cache hit, the Configuration Cache increments an “in-use count” and re-

sponds immediately to DANA’s Transaction Table with the index into the cache that

that transaction will use going forward. On a cache miss, the Configuration Cache

reserves a cache entry5 and begins the process of loading a neural network configura-

tion from memory. This loading process involves traversing the ASID–NNID Table and

is not handled by the cache, but using a dedicated ASID–NNID Table Walker module

described in the following subsection. The Configuration Cache generates a request

to the ASID–NNID Table Walker with the requested ASID–NNID tuple and will respond

to DANA’s Transaction Table once the neural network configuration is loaded.

Additionally, due to the fact that DANA supports learning transactions, a neural

network configuration can be modified. We use a write-back policy in that the neural

network configuration will only be written back to the ASID–NNID Table (and, conse-

quently, written back to the memory of the microprocessor) when that cache entry is

evicted. Cached neural network configurations can, however, be safely evicted with-

out write-back assuming that they have never been part of a learning transaction,

i.e., they have never been modified by DANA.

Simultaneous to any of these loading or storing operations, the Configuration

Cache may respond to PEs or the Transaction Table to complete requests for data

stored at specific memory locations in the cache. In the case of conflicting accesses,

requests are buffered and cleared in the order in which they arrive.

5.2.3 ASID–NNID Table Walker

The ASID–NNID Table Walker performs the function of traversing the ASID–NNID

Table, a hardware data structure that allows for dereferencing the memory location

5The curious reader will observe that there is an immediate problem if the number of Configu-
ration Cache entries is fewer than the number of entries in the Transaction Table. We view this as
an invalid parameter choice or that to allow this requires additional gating logic to prevent certain
transactions from entering the Transaction Table if there does not exist an available slot in the
Configuration Cache.

83

of a neural network configuration from an ASID–NNID tuple. The ASID–NNID Table

was discussed previously in Section 4.2.2 and is shown in Figure 4·4.

The ASID–NNID Table Walker contains a hardware state machine for walking this

table using the uncached L2 port of the RoCC interface. While initial versions of

this hardware unit used cached L1 accesses, the neural network configurations have

no legitimate reason to pass through the L1 data cache of the microprocessor. The

reason for this is that there exists no foreseeable temporal or spatial reuse of these

configurations by the microprocessor. Passing these configurations through the L2

cache avoids polluting (and likely completely clearing) the L1 data cache.

In effect, the ASID–NNID Table Walker is a hardware page table walker except

the data structure is an ASID–NNID Table instead of a page table. As it is possible

for the Configuration Cache to have multiple outstanding load or store requests, the

ASID–NNID Table Walker queues pending requests by the Configuration Cache. Loads

are prioritized over stores, assuming that the loads have a destination that does not

require write-back, to provide minimal latency to outstanding transactions.

Due to the ASID–NNID Table Walker interacting directly with memory, there exist

numerous ways that loads or stores can fail. For example, there is no guarantee that

the user will provide a valid NNID (the NNID could be outside the bounds of the ASID–

NNID Table). This results in an X-FILES backend exception that the microprocessor

will have to handle. An exhaustive list of all exceptions that DANA can generate

(which will result microprocessor interrupts) are shown in Table 4.2.

5.2.4 Control module

DANA’s control module largely provides routing of signals from and to different mod-

ules internal to DANA. Most modules operate entirely independently of each other in

the sense that they use asynchronous interfaces to generate requests to other modules

when those modules are available and react to inbound requests. However, DANA

84

Input

Weight

MAC

Binary
Point

REG

Piecewise Linear
Unit

Config
Cache

Local
Storage

DANA Processing Element

Figure 5·2: The internal architecture of one Processing Element (PE)
of DANA. Each PE performs the operation of a single neuron, i.e., an
inner product of an input and a weight vector. A seven-part piecewise
linear unit applies an activation function.

does contain a distinct control module responsible for intercepting specific signals and

generating auxiliary requests to specific modules. DANA’s Transaction Table does

contain additional control logic for arbitration amongst outstanding transactions. A

future version of DANA would provide better delineation between these two modules.

5.2.5 Processing Elements

DANA’s PEs are the parties responsible for moving transactions to completion. How-

ever, the PEs are intentionally designed as to be incredibly simple structures per-

forming very simple operations. Specifically, in feedforward mode, they perform an

inner–weight product and apply a piecewise linear approximation of an activation

function. When running in learning mode, they are performing the underlying opera-

tions of a gradient descent algorithm reusing this same multiply–accumulate–activate

hardware. Figure 5·2 shows the basic architecture of a single PE. Note that this unit

is largely unchanged from the PE design of T-fnApprox in Figure 3·2.

The PEs are entirely ballistic once allocated by DANA’s Transaction Table. The

Transaction Table provides them with a pointer to data in one of the Scratchpad

85

4 Elements Per Block

element 4 element 3 element 2 element 1

8 Elements Per Block

element 8 element 7 element 6 element 5

element 4 element 3 element 2 element 1

Figure 5·3: Internally, DANA operates on blocks of elements. In the
Chisel implementation, this is a configurable parameter. Communica-
tion of blocks decreases the total number of requests, but increases the
total bandwidth and storage requirements due to unfilled blocks.
© 2015 IEEE. Reprinted, with permission, from [Eldridge et al., 2015].

Memories and a pointer into the Configuration Cache that they can use to configure

themselves, i.e., this is a pointer to a specific neuron in the neuron information region

of a specific neural network configuration. The PEs then read and write until they

have finished their designated task and deallocate themselves. The Transaction Table

is then free to assign a task to another PE. The specific operation of PEs as a whole

for both feedforward and learning transactions is discussed in detail in Sections 5.3.1

and 5.3.2.

The PEs do not communicate directly with each other. While this design choice is

suboptimal from a performance perspective, it makes the allocation of PEs to different

transactions straightforward. Instead of direct communication, the PEs communicate

indirectly through read and write operations on one of the Scratchpad Memories. The

lack of direct PE communication creates a bandwidth and a request problem for the

PEs. Specifically, the PEs need to generate requests to the Scratchpad Memories for

inputs and the Configuration Cache for weights. The PEs must then compete for

limited bandwidth to these units.

As a mild remedy, all PEs operate on wide blocks of data composed of a number

of elements. Figure 5·3 shows the organization of blocks of four and eight elements.

While this does not reduce the actual bandwidth requirements (it actually increases it

due to block alignment restrictions), this reduces the total number of requests that a

86

E[output]
Input

Hidden1 Output
Hidden2 Output

HiddenN Output
Output

Feedforward Computation

Output δ-Weight Sum
HiddenN δ-Weight Sum

Hidden2 δ-Weight Sum

Bias Updates Hidden1
Bias Updates Hidden2

Bias Updates HiddenN

Weight Updates

Error Backpropagation

Scratchpad Memory

Gradient
Descent

Learning

3 4 5

1 2

B

B

1 2 3

4 5

B

B

Feedforward
Inference

Pass
Through
Input

Neurons

Bias Neurons
Accumulated Weight Updates

Configuration
Cache

ASID NNID State

Cache
Memory Post-Batch

Weight Updates
Dana Accelerator

Figure 5·4: A per-transaction Scratchpad Memory and the move-
ment of data involving reads and writes by DANA’s Processing Ele-
ments (PEs) for both feedforward inference and gradient descent learn-
ing transactions.

PE will generate. All data in the Configuration Cache and Scratchpad Memories must

then be block aligned to avoid the overhead of misaligned reads requiring multiple

reads to complete a single request.

5.2.6 Scratchpad memories

DANA provides intermediate storage and, implicitly, PE communication through per-

transaction scratchpad memories. Figure 5·4 shows one such scratchpad memory and

the breakdown of data internal to it. At a high level, each scratchpad is broken

into three logical regions. The top region contains information related to feedforward

computation. Note that a feedforward transaction does not have expected outputs

(E[output])—the input region is shifted up to the fill this spot. The middle region

contains information related to error backpropagation. The bottom region contains

87

accumulated weight updates for learning transactions with a batch size larger than

one.

The element–block organization discussed previously introduces some difficulties

for proper organization and use of the scratchpad memories. Specifically, in feedfor-

ward computation, each PE computes one element of a block. Similarly, during a

learning transaction, each PE computes a partial delta–weight product which must

be accumulated directly in the scratchpad memory.

In response, we introduce several modifications to a traditional memory unit to

enable element-wise writes and in-memory accumulations. Each write to a memory

location can be one of the following operations:

• Element-wise, overwriting old data (feedforward operation generating an output)

• Element-wise, accumulating with old data (learning with accumulation of a

delta–weight product)

• Whole-block, overwriting old data (a weight block that is from the first unit of

a batch)

• Whole-block, accumulating element-wise with old data (a weight block not the

first unit of a batch)

We accomplish this using a two-stage read-modify-write operation with input

forwarding to cover the case of back to back writes to the same block. This style

of memory architecture bears similarities to architectures supporting atomic memory

operations and read/write masks. Alternatively, a different DANA architecture that

used direct PE communication (via, e.g., PE output broadcast, an explicit PE routing

network, or a systolic array of PEs) would remove the necessity of this scratchpad

memory design.

Due to the need for a learning operation to overlay the weight updates from a

scratchpad memory on the Configuration Cache, we reuse this memory hardware for

88

the Configuration Cache memories.

5.3 Operation for Neural Network Transactions

We now provide an overview of how both feedforward and gradient descent learning

works and how it is implemented on DANA. Figure 5·4 shows the logical operation

of DANA for a learning transaction (which includes feedforward computation).

5.3.1 Feedforward computation

DANA computes an output vector for a given input vector. The input vector is

communicated to the scratchpad memory for that transaction through the X-FILES

Hardware Arbiter’s input queue. During this process, the Configuration Cache and

the ASID–NNID Table Walker are working together to load the correct neural network

configuration if it is not already present.

Once the data is loaded and the neural network configuration is available, DANA’s

Transaction Table begins allocating neurons in the first hidden layer. Neurons are

allocated left to right, as shown with the counts in the Feedforward Inference block

of Figure 5·4. Each PE is responsible for applying an activation function, σ, to an

inner–weight product:

y =
∑
∀weights

weight× input (5.1)

z = σ (y) (5.2)

Each PE may require multiple reads from the Configuration Cache and the scratch-

pad memory to sequentially load all the weights and inputs. After the computation

of the activation function, the PE writes its output to the scratchpad memory. All

PEs for the first hidden layer neurons perform this process in parallel. Once all PEs

have written their outputs to the scratchpad memory, the scratchpad memory noti-

89

fies the Transaction Table that all outputs are available and the next layer can begin

processing.

This process repeats for all neurons in the neural network until a final output

vector is computed. Following this, the transaction is done and the output vector is

loaded into an output queue of the X-FILES Hardware Arbiter where a user process

will grab the data. Once the output queue has been emptied, the transaction is

removed from all the Transaction Tables and that entry can be reused for a new

transaction.

5.3.2 Learning

Learning involves modifying the weights of inter-neuron connections in an attempt to

minimize an output cost function like mean squared error (MSE). The challenge of

learning is then rapidly determining the relative contribution of each weighted con-

nection towards this cost function, i.e., the partial derivative of the cost function with

respect to each weight. By deliberately choosing differentiable activation functions,

output derivatives (or errors) backpropagate through the network in a single backward

sweep, much faster than via the chain rule. In the update step, weights are moved

against their individually computed derivatives to, ideally, decrease the cost function.

A learning transaction starts where a feedforward transaction ends, right when a

PE performing the functions of an output neuron computes an output. This neuron

then computes the error (the difference between the expected value and the computed

value for that neuron only) and uses this to compute the derivative of the error. Each

output neuron reads its expected output value, E[zout], from a Scratchpad Memory,

and computes its output error, E[zout] − zout, and cost function derivative, δ. This

derivative requires the activation function derivative, σ′, which can be defined in

terms of known parameters for a sigmoid (Equation 5.3). Note that to align with

FANN we apply an inverse hyperbolic tangent function that amplifies the output

90

error (Equation 5.4):

σ′sigmoid(y) = σsigmoid(y)× (1− σsigmoid(y)) (5.3)

δout = σ′ (yout) atanh(E[zout]− zout) (5.4)

Output derivatives are broadcast backwards along the input connections of an out-

put neuron, multiplied by their connection weights, and accumulated at the previous

layer nodes (see Equation 5.5). This is accomplished through the aforementioned

in-memory accumulation hardware of the scratchpad memories. Scaled by the acti-

vation function derivative, σ′, this product forms the cost function derivative for each

hidden node in the previous layer i− 1:

δhiddeni−1
= σ′

(
yhiddeni−1

) ∑
∀weights

δouti × weighti (5.5)

Weight accumulation

During the gradient descent learning phase of a learning transaction, each PE will

also generate a weight update, ∆w, by multiplying the neuron-specific cost function

derivative, δ, by the current input seen along that connection:

∆w = δ × input (5.6)

In the case of stochastic gradient descent, this weight update will be immediately

used to update the old weight stored in the Configuration Cache (see below). For

gradient descent learning (or if some batch size is used), partial weight updates are

accumulated in a Scratchpad Memory over some number of input–output pairs before

being used to update the old, cached weight. Bias updates or partial bias updates

are similarly computed.

91

Weight update

All accumulated partial weight updates are finally scaled by a user-specified learning

rate (divided by the batch size) and added to the old weight value:

weight = old weight +
learning rate

training pairs
×

∑
∀training pairs

∆w (5.7)

In consequence, on completion of a batch, the accumulated partial weight and bias up-

dates in the scratchpad memory are used to update the neural network configuration

in the Configuration Cache.

5.4 Summary

Here, we provide the architectural description of DANA, a multilayer perceptron

neural network accelerator that acts as a multi-transaction backend for the X-FILES

hardware and software extensions. Together, X-FILES/DANA can be used to aug-

ment a RISC-V microprocessor and enable hardware acceleration of both feedforward

inference and gradient descent learning transactions. Our evaluation of this com-

bined system is discussed in more detail in Chapter 6. All HDL and source code for

X-FILES/DANA hardware and software is available on the Boston University Inte-

grated Circuits and Systems group GitHub [Boston University Integrated Circuits and

Systems Group, 2016]. Using the open source Rocket Chip GitHub repository [UC

Berkeley Architecture Research Group, 2016], a complete Rocket + X-FILES/DANA

system can be emulated in software or evaluated in FPGA hardware.

92

Chapter 6

Evaluation of X-FILES/DANA

This chapter summarizes existing and new evaluations of DANA and X-FILES/DANA

during the various stages of development that this project has undergone. We first

provide a description of the various work and implemented versions of this system and

then delve into DANA-specific analysis followed by evaluation of a complete RISC-V

microprocessor (Rocket) + X-FILES/DANA.

6.1 Different Implementations of X-FILES/DANA

There currently exist three implementations that incorporate some version of DANA:

• A C++ model of DANA

• A SystemVerilog version of X-FILES/DANA accessed via a Universal Asyn-

chronous Receiver/Transmitter (UART) wrapper

• A Chisel [Bachrach et al., 2012] version of X-FILES/DANA integrated with

a RISC-V microprocessor [Boston University Integrated Circuits and Systems

Group, 2016]

The C++ model was only used for initial design space exploration of the archi-

tecture and is not specifically evaluated in this section. However, it is important to

comment on some of the lessons learned during this exploratory design phase that

impacted the SystemVerilog and Chisel versions.

First, this version (and the SystemVerilog version) uses a Register File composed

93

of blocks of elements for intermediate storage (as opposed to the Chisel version that

uses Scratchpad Memories). Figure 6·1 shows this Register File architecture. At the

time, only inference transactions were considered and these required substantially less

intermediate storage space than learning transactions. However, this Register File,

which also uses DANA’s block of elements data organization (see Figure 5·3), needs

to store vectors of data larger than a single block. To remedy this, the Register File

uses a linked list-like structure to logically connect blocks in the Register File. Each

entry in the Register File contains a “next” pointer, fields with the number of used

(written to) entries, and a “last” bit. The next pointer defines the entry of the next

block in a sequence, the number of used entries prevents a PE from reading invalid

data, and the last bit defines when a PE has read all the inputs it needs to.

This structure, while workable, is overly complicated and unsuitable for learning

transactions that produce abundant intermediate data. Additionally, the use of this

Register File architecture slows down the rate of PE allocation as the Control Module

must reserve entries in the Register File before PEs can be allocated. Without this

reservation step, PEs can deadlock if they have no output location in the Register File

to write to. While the Register File approach was used for the subsequent SystemVer-

ilog implementation, this was eventually abandoned in the Chisel implementation for

dedicated per-transaction Scratchpad Memories.

Second, the C++ model provided early indications that exposing multiple, simul-

taneous neural network transactions to DANA improved DANA’s overall throughput.

This result, quantified for the SystemVerilog implementation in subsequent sections,

is not surprising, however. Exposing multiple neural network transactions allows

DANA to utilize the explicit parallelism of multiple, independent transactions to dy-

namically avoid read after write (RAW) dependencies that cause a single transaction

to stall.

94

Data to store:

R0 R1 R2 R3

R4 R5 R6 R7

R8 R9 R10 R11

R12 R13 R14 R15

Block0

Block1

Block2

Block3

Block2

Pointer

4

2

3-1

-1

1

1

1

0 -1 -1

Register File

RegistersValid #U
se
d

is
La
st

0

1

1

-1

Figure 6·1: Register File (left) used to store two groups of inter-
mediate data (right) in initial DANA implementations and used for
Section 6.2 evaluations. The Register File uses the block of elements
structure of DANA (see Figure 5·3) with the Register File shown above
having four blocks of four elements (or registers) each. Data larger
than a single block, e.g., blue “data to store” (right), spans multiple
Register File blocks (block0 and block2). A pointer indicates the next
block in such a sequence and a #Used field and isLast bit allow for par-
tially filled blocks and determination of the last block and element in
a sequence. This architecture is not, however, suitable for storing large
amounts of data (e.g., for learning transactions) and, consequently, was
replaced by per-transaction Scratchpad Memories (see Figure 4·3 and
Section 5.2.6) in later DANA versions.

95

This C++ model was integrated with the gem5 system simulator [Binkert et al.,

2011], but was not ultimately used for evaluations. We replicated the load/store

unit of gem5 to create an accelerator load/store unit. Using additional x86 assembly

instructions, we were then able to use DANA, integrated directly with this load/store

unit to accelerate neural network computation. The interface, at this time, was a

simple write/read pair composed of two instructions: ACCWRITE and ACCREAD (cf.

their eventual successors write data and read data spinlock in Table 4.3). These

could be used to write an input vector to DANA and, after processing, read the

output vector. Neural network configurations were preloaded into the Configuration

Cache and not loaded through the write/read interface.

Nonetheless, we deemed it prudent to focus on an actual hardware implementation

of DANA. Consequently, the gem5 + DANA implementation was not specifically used

for any extensive evaluation.

6.2 X-FILES/DANA in SystemVerilog

Following this prototyping exercise of a C++ version of DANA integrated with gem5,

we implemented X-FILES/DANA1 in SystemVerilog. This approach did not deviate

dramatically from the architecture developed during the C++ prototype phase and

broadly speaks to the utility of software prototyping before hardware implementation.

At this time, the delineation between the X-FILES Hardware Arbiter and DANA

was not clearly defined, e.g., there was a single, unified Transaction Table inter-

nal to the Hardware Arbiter. Consequently, the Hardware Arbiter was not suit-

ably designed for backends differing from DANA. Figure 6·2 shows the architectural

diagram for the SystemVerilog implementation of X-FILES/DANA. Note that the

ASID–NNID Table Walker, ASID units, and Transaction Queue were defined in the

1During this time the separation of transaction management hardware (the X-FILES Hardware
Arbiter) and the backend accelerator (DANA) began to take shape.

96

ASID-NNID
Table
Walker

ASID-NNID Table Pointer

Transaction
Queue

Core 1

L1 Data $

L2 $

X-FILES Arbiter

ASID

ASID

ASID Register File

PE-1

PE-NEntry-N

Entry-1

PE Table

Entry-2
Memory
Memory

Entry-1

NN Config Cache

ControlTransaction Table

ASID TID NNID State

DANA

Num ASIDs

Core 2

L1 Data $

Core N

L1 Data $

Figure 6·2: Architecture of the SystemVerilog version of X-
FILES/DANA. This uses a unified Transaction Table in contrast to
the split Transaction Table of the most recent implementation (cf. Fig-
ure 4·3). For evaluation purposes, the ASID–NNID Table Walker was
not implemented (though memory loading latencies were included in
our evaluations).
© 2015 IEEE. Reprinted, with permission, from [Eldridge et al., 2015].

original X-FILES/DANA specification [Eldridge et al., 2015], but not included in

the SystemVerilog implementation. However, for the purposes of subsequent power

evaluations, these units take up negligible power and area compared to the other

components of X-FILES/DANA. Additionally, this version of X-FILES/DANA does

not support gradient descent learning—that support was added for the Chisel imple-

mentation.

6.2.1 Power and latency

The power and performance of this SystemVerilog implementation were evaluated in

a 40nm GlobalFoundries process. We used a modified Cadence toolflow, extended

to estimate power using the placed and routed netlist with internal activity factors

expressed with a value change dump (VCD) file. We estimated the power consumption

of all black box memory units with Cacti [Shivakumar and Jouppi, 2001]. Figure 6·3

shows the power consumption per module for variations in the design space of X-

FILES/DANA. Specifically, we varied the number of PEs and the number of elements

per block.

97

1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

400

Number of Processing Elements

P
ow

er
(m

W
)

4 Elements per Block

1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

400

Number of Processing Elements

P
ow

er
(m

W
)

8 Elements per Block

103

104

105

P
ro

ce
ss

in
g

T
im

e
(n

s)
103

104

105

P
ro

ce
ss

in
g

T
im

e
(n

s)

Processing Elements Cache Register File Transaction Table Control Logic

inversek2j fft sobel blackscholes jmeint kmeans

collatz rsa jpeg edip 3sum ll

Figure 6·3: Bar plot : average power per internal module of DANA.
Line plot : processing time of different neural network configurations
from Table 6.1. The number of Processing Elements (PEs) is varied
from 1–11 for DANA variants with four (top) and eight (bottom) ele-
ments per block.
© 2015 IEEE. Reprinted, with permission, from [Eldridge et al., 2015].

98

Changes in the number of PEs result in a linear variation in the power consump-

tion. While this was not strictly expected, the nature of the architecture is such that

increasing the number of PEs does not have an effect on the other modules in the

system. This is due to the aforementioned limited bandwidth between the PEs and

other modules in the system with which the PEs communicate, i.e., the Configura-

tion Cache and Register File (Scratchpad Memories in later versions). Increasing the

number of PEs does increase the multiplexing/demultiplexing logic around the PEs,

but other modules are unaffected.

Across these two design space dimensions, we also computed the processing time

for neural networks used in the literature for approximate computing, automatic

parallelization, and an approximation of a physics application. Table 6.1 shows the

topologies and sources for the neural networks we evaluated. Using SystemVerilog

testbenches, we determined the cycle counts necessary to run one feedforward pass

through each of the neural networks in Table 6.1. The maximum clock frequency had

already been determined during the ASIC toolflow step when determining the power

consumption. We report the overall processing time for one feedforward inference of

these neural networks in Figure 6·3.

As expected, more PEs and wider block widths yield better performance. How-

ever, all evaluated neural networks demonstrate asymptotic behavior eventually. The

reason for this is two-fold. First, these neural networks have intrinsic parallelism,

but this parallelism is a fixed quantity and a function of the topology of the neural

network. Once the available parallelism of a neural network has been exhausted by

the number of available PEs, then adding more PEs will not provide any additional

performance improvements.

This is particularly noticeable for small neural networks, like fft with its 1× 4×

4× 2 topology. Consider the first hidden layer in the fft neural network. There are

99

Table 6.1: The neural network configurations for approximate com-
puting [Esmaeilzadeh et al., 2012b, Amant et al., 2014, Moreau
et al., 2015], automatic parallelization [Waterland et al., 2014], and
physics [Justo et al., 1998] applications used to evaluate the SystemVer-
ilog version of X-FILES/DANA.
© 2015 IEEE. Reprinted, with permission, from [Eldridge et al., 2015].

Area Application Configuration Size Description

Automatic
Parallelization

3sum 85× 16× 85 large Test if a multiset satis-
fies 3-subset-sum prop-
erty

collatz 40× 16× 40 large Search for counterexam-
ples to the Collatz con-
jecture

ll 144× 16× 144 large Compute energies of
linked list of Ising spin
systems

rsa 30× 30× 30 large Brute-force prime fac-
torization

Approximate
Computing

blackscholes 6× 8× 8× 1 small Financial option pricing
fft 1× 4× 4× 2 small Fast Fourier Transform
inversek2j 2× 8× 2 small Inverse kinematics
jmeint 18× 16× 2 medium Triangle intersection de-

tection
jpeg 64× 16× 64 large JPEG image compres-

sion
kmeans 6× 16× 16× 1 medium k-means clustering
sobel 9× 8× 1 small 3× 3 Sobel filter

Physics edip 192× 16× 1 large Environmental-
dependent interatomic
potential (EDIP) ap-
proximation of density-
functional theory poten-
tial energy

100

four neurons and each has one multiply accumulate to perform. Adding more PEs

beyond four cannot benefit the performance of this neural network in any way as the

neurons in the second hidden layer are waiting for the first hidden layer to finish.

This brings us to our second point, namely, that each of these neurons in the first

hidden layer only have a single multiply accumulate to perform. The limited amount

of work means that a PE allocated to the first hidden layer is not busy for very long

and increasing the number of elements per block has no effect. For these combined

reasons, we see the fft neural network demonstrate asymptotic behavior beyond four

PEs and identical behavior for both four and eight elements per block variations.

Relatedly, the design choice of fixed request bandwidth between PEs and storage

areas does, generally, render certain PE and block width configurations inefficient.

Specifically, when the number of PEs exceeds the elements per block, PEs are guar-

anteed to be waiting to access storage resources. This relates to the “amount of work”

argument above. A PE will generate a request to the Register File (or Scratchpad

Memories) and the Configuration Cache when it runs out of work to do, i.e., it runs

out of inputs and weights to process. Increasing the block size from four to eight

(or more) elements per block allows each request to grab more data and increase

the time between subsequent requests for more data by each PE. However, when the

block size is less than the number of PEs, the PEs are frequently waiting as they need

to arbitrate amongst themselves to determine who gets access to the Register File (or

Scratchpad Memories) and the Configuration Cache.

This behavior is most prominent for “large” neural networks with sufficient parallel

work (number of neurons in a layer) and sufficient work per neuron (the number of

neurons in the previous layer). The neural network for edip works as a good example.

We see edip show significant improvements when moving from four to eight elements

per block with gains approaching a theoretical 2×. Unfortunately, this strategy of

101

increasing the number of elements per block breaks down under two scenarios. First,

certain neural network configurations do not exhibit sufficient parallelism or work

per neuron, e.g., fft. This limitation, however, can be somewhat remedied by using

DANA’s capacity to execute multiple transactions simultaneously (see Section 6.2.2).

Second, increasing the block size requires increasing the bandwidth between modules.

Consequently, increasing the block size beyond a certain point becomes infeasible.

6.2.2 Single and multi-transaction throughput

We go on to evaluate the throughput of the X-FILES/DANA architecture for both

single and multi-transaction usage models. First, and using the same neural network

configurations shown in Table 6.1, we compute the throughput of X-FILES/DANA

when running a single transaction comprised of one feedforward inference. Figure 6·4

shows these results.

These results demonstrate some interacting effects related to how well the neurons

in a neural network “fit” into the number of available PEs. Take edip as an example

with its 192× 16× 1 topology. The amount of work each neuron in the hidden layer

has to do (192 multiplications) dwarfs the block size. Each allocated PE in the hidden

layer can then be viewed as being allocated for a long time. When the hidden layer

of 16 neurons aligns with some multiple of the number of PEs, then we see noticeable

jumps in the throughput. In effect, a six-PE configuration performs just as well as a

seven-PE configuration while an eight-PE configuration performs markedly better.

Generally, we view this as an opportunity for improving the throughput by ex-

posing multiple simultaneous transactions. The seven-PE configuration is obviously

leaving throughput on the table and, by providing additional work for the accelerator,

we can improve the scaling behavior as we add more PEs. Figure 6·5 shows the same

throughput plots but when running two simultaneous transactions. We select fft,

kmeans, and edip as these respectively represent small, medium, and large neural

102

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

Number of Processing Elements

E
d
ge

s
p

er
C

y
cl

e
4 Elements per Block

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

Number of Processing Elements

E
d
ge

s
p

er
C

y
cl

e

8 Elements per Block

inversek2j fft sobel blackscholes jmeint kmeans

collatz rsa jpeg edip 3sum ll

Figure 6·4: The throughput of DANA measured in processed neural
network edges per cycle when executing a single neural network trans-
action from Table 6.1.
© 2015 IEEE. Reprinted, with permission, from [Eldridge et al., 2015].

103

network configurations for our motivating applications.

As an initial observation, the behavior is much more linear—the staircase behavior

of Figure 6·4 disappears once we expose multiple transactions to X-FILES/DANA.

Nevertheless, the absolute improvements are difficult to measure just by visually

comparing Figures 6·4 and 6·5.

Figure 6·6 shows the throughput speedup when running two neural network trans-

actions simultaneously versus serially. Overall, we see a maximum improvement of

30% with an average speedup of greater than 10%. Note that not all configurations

see this speedup. Specifically, two edip transactions show a significant decrease in

performance. This is an unfortunate artifact of the architecture of this SystemVer-

ilog implementation of X-FILES/DANA. The coordination between the Transaction

Table and the Control Module to allocate neurons to PEs, for this version, allocates

neurons in subsequent layers before the current layer finishes. When two instances of

edip, with their 16 hidden neurons per hidden layer, execute on DANA there exists

one optimal assignment pattern of neurons to PEs. Specifically, if the allocation of

PEs is in any way uneven, the single output neuron from one of the PEs will be allo-

cated before all of the neurons in its hidden layer finish. The large number of input

neurons, 192, exacerbates this problem and causes this PE with an output neuron to

sit idle for a long time. If the PEs are allocated perfectly, this problem does not occur.

However, any (likely) deviation in the start times of the transactions will result in a

suboptimal allocation procedure.

For this reason, the subsequent reimplementation of X-FILES/DANA in Chisel

does not allocate neurons in later layers until all neurons in the current layer have

completed execution. This does, however, leave some minimal performance on the

table for single transaction processing (PEs begin execution a few cycles faster if they

are preallocated before their inputs are ready). Nevertheless, our general view and

104

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

Number of Processing Elements

E
d
ge

s
p

er
C

y
cl

e

4 Elements per Block

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

Number of Processing Elements

E
d
ge

s
p

er
C

y
cl

e

8 Elements per Block

fft-fft kmeans-fft kmeans-kmeans edip-fft edip-kmeans edip-edip

Figure 6·5: The throughput of X-FILES/DANA, measured in edges
per cycle, when executing two simultaneous feedforward inference neu-
ral network transactions.
© 2015 IEEE. Reprinted, with permission, from [Eldridge et al., 2015].

105

1 2 3 4 5 6 7 8 9 10 11
−20 %

−10 %

0 %

10 %

20 %

30 %

Number of Processing Elements

T
h
ro

u
gh

p
u
t

S
p

ee
d
u
p

4 Elements per Block

1 2 3 4 5 6 7 8 9 10 11
−20 %

−10 %

0 %

10 %

20 %

30 %

Number of Processing Elements

T
h
ro

u
gh

p
u
t

S
p

ee
d
u
p

8 Elements per Block

fft-fft kmeans-fft kmeans-kmeans edip-fft edip-kmeans edip-edip

Figure 6·6: The throughput speedup of X-FILES/DANA when run-
ning two simultaneous feedforward inference neural network transac-
tions versus the same two transactions serially. We vary the design
space for configurations with 1–11 PEs and four or eight elements per
block.
© 2015 IEEE. Reprinted, with permission, from [Eldridge et al., 2015].

106

Table 6.2: Energy, delay, and energy delay product (EDP) reductions
when executing neural network configurations on X-FILES/DANA
compared to a purely software implementation running on a gem5-
simulated single core of an Intel Single Chip Cloud (SCC) system.
Power evaluations were computed using McPAT [Li et al., 2009].
© 2015 IEEE. Reprinted, with permission, from [Eldridge et al., 2015].

NN Energy Delay Energy–Delay Product

3sum 7× 95× 664×
collatz 8× 106× 826×
ll 6× 88× 569×
rsa 6× 88× 566×

motivating applications demonstrate the need for multi-transaction systems and the

resulting multi-transaction throughput improvements, as demonstrated by Figure 6·6,

are significant.

As an additional evaluation of this implementation of X-FILES/DANA, we pro-

vide an energy and performance comparison against a software implementation. Our

software implementation uses the FANN library running on the gem5 system sim-

ulator acting as one core of an Intel Single Chip Cloud (SCC) microprocessor. We

estimate the power of the Intel SCC software-only version using McPAT [Li et al.,

2009]. The only software optimization used by FANN is software pipelining. Our

energy and delay comparison points for X-FILES/DANA are from our placed and

routed 40nm design. We assume that the neural network configurations are not avail-

able in DANA’s Configuration Cache and have to be loaded in over a multi-cycle

operation that loads one block per cycle.

Table 6.2 shows dramatic, though expected, improvements over this floating point

software implementation. Tangentially, we are generally skeptical of the overall ac-

curacy of this type of power modeling [Xi et al., 2015]. Nonetheless, a 2–3 order

of magnitude improvement over a software implementation for a dedicated piece of

hardware optimized for neural network processing is not unexpected.

For additional, automated testing, this X-FILES/DANA version was wrapped in

107

a UART interface and loaded onto a Xilinx Zynq FPGA. Error checking against a

floating point version of FANN validated the correctness of this SystemVerilog im-

plementation. Finally, this FPGA implementation was interfaced with the automatic

parallelization work of our collaborators to demonstrate an end-to-end system that

offloads neural network inferences to our dedicated X-FILES/DANA hardware.

6.3 Rocket + X-FILES/DANA

As a followup to this SystemVerilog version, we wanted to more tightly integrate

X-FILES/DANA with a RISC-V microprocessor.2 Using the lessons learned from the

SystemVerilog version (i.e., a Register File structure adds significant complexity and

aggressive PE allocation leads to subpar performance in multi-transaction scenarios),

we reimplemented X-FILES/DANA in the Chisel HDL [Bachrach et al., 2012]. We

previously described the resulting architecture in Chapters 4 and 5.

Following a vanilla port of SystemVerilog to Chisel and a conversion of the Register

File to per-transaction Scratchpad Memories, we added support for gradient descent

learning whose operation is discussed in Section 5.3.2. Learning support is, however,

an optional parameter, i.e., X-FILES/DANA can be built to either support or not

support learning.

Using the complete Rocket + X-FILES/DANA system we then evaluated the new

capabilities of this architecture on gradient descent learning tasks. Using different

neural networks provided by the FANN library and shown in Table 6.3, we executed

gradient descent learning3 on Rocket + X-FILES/DANA. Our only concern at this

2We chose RISC-V due to its completely open nature (anyone can design a RISC-V microprocessor
without a license), our initial thought that we would need to implement changes to the underlying
ISA to support X-FILES/DANA, and the existence and active development of implementations of
RISC-V microprocessors by others, e.g., UC Berkeley’s Rocket [UC Berkeley Architecture Research
Group, 2016].

3This is true gradient descent learning in that we do not use batching and compute the gradient
of the entire training set before updating the weights of the neural network.

108

Table 6.3: FANN-provided [Nissen, 2003] datasets and the topologies
of the neural network configurations used for evaluation of the gradient
descent learning capabilities of X-FILES/DANA

Type Name Topology

Regression

abelone 10× 8× 1
bank32fm 32× 16× 1
bank32nh 32× 16× 1
building 14× 8× 3
kin32fm 32× 20× 1
pumadyn 32fm 32× 16× 8× 4× 1
robot 48× 16× 3

Classification
diabetes 8× 10× 2
gene 120× 20× 3
soybean 82× 32× 19
thyroid 21× 10× 3

time is on the performance of X-FILES/DANA, as opposed to an achievable MSE

on a testing dataset (as this type of analysis falls more within the realm of machine

learning than accelerator architecture).

nFigure 6·7 shows the weight updates per cycle (WUPC), a measure of through-

put, of an unmodified Rocket microprocessor executing gradient descent learning in

software and on a Rocket + X-FILES/DANA system with neural network compu-

tation offloaded to X-FILES/DANA. Data was collected from an FPGA implemen-

tation due to the added speed of such an approach. The clock frequency of both

FPGA implementations was fixed at 25MHz, a limitation of the FPU of the Rocket

microprocessor.4

Overall, we see a 30× speedup over the software implementation. However, Fig-

ure 6·7 also demonstrates similar behavior to that of the prior feedforward analysis.

Specifically, the network topology moderates the achievable throughput and increases

in the number of PEs demonstrates asymptotic behavior. Network topology de-

termines the amount of available parallelism and is expected to limit the available

performance of a system. X-FILES/DANA must obey the hard RAW data depen-

4Naturally, an ASIC implementation would have a dramatically improved clock rate as evidenced
by Rocket implementations running at 1GHz [Lee et al., 2014, Zimmer et al., 2016].

109

0

0.1

0.2

0.3

0.4

0.5

W
ei

gh
t

U
p

d
at

es
p

er
C

y
cl

e

Rocket WUPC

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

Number of Processing Elements

Rocket + X-FILES/DANA WUPC

abelone bank32fm bank32nh building kin32fm pumadyn-32fm

robot diabetes gene soybean thyroid

Figure 6·7: Left : The throughput, measured in weight updates per
cycle (WUPC) for a pure-software version of FANN [Nissen, 2003] run-
ning on a RISC-V Rocket microprocessor. Right : The WUPC for a
Rocket microprocessor with an X-FILES/DANA accelerator for con-
figurations with 1–6 processing elements (PEs) and four elements per
block. Both versions are running at the same 25MHz clock frequency
on a Xilinx Zynq Field Programmable Gate Array (FPGA).

110

dencies inherent in the structure of a neural network.5 Consequently, networks with

ample parallelism, like soybean, demonstrate the highest throughput while smaller

networks, like abelone, demonstrate reduced throughput. Allowing multiple trans-

actions to execute would, assumedly, improve the overall throughput in the same way

that multi-transaction operation improves the throughput of feedforward inference.

In regards to asymptotic behavior, the marginal benefit of increasing the number

of PEs eventually becomes negligible and would require an increase in the block size

to more fully take advantage of these PEs. Nonetheless, increasing the bandwidth

between components will eventually hit fundamental limits in the number of connect-

ing wires between modules. More sophisticated architectural improvements via new

X-FILES backends that avoid these bandwidth issues are discussed in Section 7.3.4.

6.4 Summary

We demonstrate the capabilities of the X-FILES/DANA neural network accelerator

for both feedforward inference and gradient descent learning applications. The small

neural network topologies used by some emerging application domains, approximate

computing and automatic parallelization, can be mitigated by exposing multiple si-

multaneous transactions (and, consequently, more parallel work) to X-FILES/DANA.

For further evaluation on the part of the reader, we provide X-FILES/DANA as

open source hardware on GitHub [Boston University Integrated Circuits and Systems

Group, 2016].

5Nevertheless, researchers at Microsoft have demonstrated that ignoring these data dependencies
in learning applications can dramatically improve performance and, counterintuitively, improve the
overall accuracy of a trained machine learning model [Chilimbi et al., 2014].

111

Chapter 7

Conclusion

With this work we present and evaluate a multi-transaction model of neural network

computation intended to meet the needs of future machine learning applications. In

this section we summarize these contributions and provide some commentary on the

limitations of our proposed system and directions for future work.

7.1 Summary of Contributions

We present two distinctly different neural network accelerator architectures. The first,

T-fnApprox, is a fixed-topology, fixed-weight accelerator used for the approximation

of mathematical functions in the GNU C Library. The entirely fixed nature of this

system allows for dramatic order of magnitude EDP improvements over software

implementations of the same functions. Nevertheless, we do admit that this fixed

property becomes problematic with the rapidly varying nature of machine learning

research—new topologies and architectures are produced daily.

In effect, and directly addressing our multi-transaction thesis, we present X-

FILES/DANA, a system-level view of neural network accelerators that supports a

multi-transaction model of neural network acceleration. With this work we introduce

the concept of a neural network transaction that encompasses all the operations of a

user process requesting and using an accelerator for a single inference or batch learn-

ing step. Moreover, X-FILES/DANA not only encompasses accelerator hardware, but

also user-level software and supervisor-level data structures and kernel modifications

112

to enable the use of a neural network accelerator like DANA in a safe manner. We

have additionally gone through numerous refactors of our X-FILES/DANA hardware

to ensure the complete separation of these hardware components. Namely, the X-

FILES Hardware Arbiter concerns itself only with the management of neural network

transactions while DANA provides multilayer perceptron neural network acceleration.

Our evaluation of X-FILES/DANA demonstrates order of magnitude improve-

ments over software neural network libraries. Additionally, we show that the multi-

transaction nature of this architecture improves the throughput of the DANA backend

by approximately 15% across a wide range of neural network topologies from existing

work. Furthermore, we provide an open source implementation of X-FILES/DANA

in the Chisel HDL as a drop-in RoCC accelerator for RISC-V microprocessors that

can be immediately used and evaluated in simulation and in FPGA hardware.

7.2 Limitations of X-FILES/DANA

Nevertheless, the X-FILES/DANA architecture does have some limitations which,

though partially discussed in previous sections, we summarize here. The multi-

transaction throughput benefit comes as a result of us exploiting periods of com-

putation when a single transaction has limited available parallelism. This can occur

from two possible sources. First, a neural network may just be a small neural network

and not have much intrinsic parallelism at any point during its execution on DANA.

Second a large neural network has limited parallelism at the end of a layer when

neurons in the next layer are waiting to be allocated.

In regards to the case of small neural networks, recent commentary from the ma-

chine learning community suggests that small neural networks are not useful and

should not even been considered—deep and wide neural networks are where all the

interesting applications lie. We do admit that the advances of deep learning are dra-

113

matic. However, we firmly believe in using an appropriately sized neural network for

the task. The work of Esmailzadeh [Esmaeilzadeh et al., 2012b] and Waterland [Wa-

terland et al., 2014] demonstrate the utility of small neural networks for useful tasks,

i.e., approximate computing and automatic parallelization, respectively. Addition-

ally, recent literature demonstrates that there are significant sources of inefficiency in

current deep learning models. Work on the compression of deep neural networks to

more compact representations [Han et al., 2015] and on heavy bit optimization and

trimming of neural networks [Reagen et al., 2016] bolsters this argument.

Related to the case of very large neural networks, our approach with the Chsiel

implementation of X-FILES/DANA where later layers wait for earlier layers to finish

may be overly conservative. A more apt approach would be to allow neurons from sub-

sequent layers to be allocated as long as they have sufficient work to keep them busy

and performing this allocation will not cause the limited performance degradations

of Figure 6·6. A more advanced PE allocation algorithm could deliver the perfor-

mance of our multi-transaction system with just a single transaction by allowing PEs

in subsequent layers to tentatively proceed with the data that is already available.

Alternatively, the work of Project Adam, previously mentioned, may indicate that

PEs can proceed blindly without waiting for data to be available [Chilimbi et al.,

2014]. For approximate computing applications, which are approximate to begin

with, introducing another source of approximation may, likely, be a safe performance

trade-off.

On the technical side, DANA is presently limited in that a neural network config-

uration must fit within the size of a single cache memory (approximately 32KB, or

the size of a unified L1 cache, at maximum). Larger configurations are not presently

supported. However, with modifications to the Configuration Cache and the ASID–

NNID Table Walker, weights can be streamed into the Configuration Cache as needed.

114

The regular, known access patterns of neural network weights facilitates this paging

process.

7.3 Future Work

There are substantial opportunities for this work to be furthered in addition to ex-

plorations related to mitigating the present limitations of X-FILES/DANA.

7.3.1 Transaction granularity

While we firmly believe that the concept of a neural network transaction has utility,

there are certain issues with its definition. Specifically, the amount of computation

required for a neural network transaction, currently defined as encompassing all the

operations of a feedforward inference or a single stochastic gradient descent update

over some batch size, is dependent on neural network topology. Put simply, small

networks have less computation than big networks. This variability in the “size” of

a transaction makes scheduling difficult and provides motivation for breaking down

transactions into more finely-grained steps. Within the scope of DANA, this involves

converting each neural network transaction into a set of assignments to PEs. At a

very high level, DANA can be viewed as dynamically translating a neural network

transaction into a sequence of microcoded address computations, transaction state

updates, and PE assignment operations.

While acceptable, a cleaner (and more RISC-like) approach involves defining neu-

ral network transactions as the elementary instructions of neural network computa-

tion. The question then becomes, “What are the fundamental units of neural network

computation?” Within the scope of this work, these should necessarily include vector–

vector multiplication representing the input–weight products of all-to-all connected

MLP neurons, backpropagation instructions supporting stochastic gradient descent,

and weight update instructions the can be used to construct stochastic or batched

115

modifications of NN connections. In light of recent interest in CNNs and other DNNs,

these should additionally include convolution with a fixed kernel and stride and max-

pooling/averaging over a window with a specific stride.

7.3.2 Variable transaction priority

Alternatively, allowing for variability in the priorities of existing neural network trans-

actions may mitigate some of the issues addressed above with transaction granularity.

At present, all transactions in X-FILES and DANA are arbitrated amongst using

round robin scheduling. In one sense, this is fair in that all transactions have an

equal opportunity to access hardware resources. However, this is not always ideal.

Specifically, transactions involving large neural network configurations may initially

monopolize all the available PEs and prevent a second transaction with a small neural

network from beginning execution. Relatedly, an optimal decision may be to weight

the arbitration based on the amount of work that a transaction has to perform. These

questions remain open and warrant further investigation.

In a more concrete comment and related to the notion of X-FILES as providing

access to hardware-backed learning and inference for all user and supervisor processes,

a standard notion of process niceness should likely be observed. In our view, the

operating system could utilize a neural network accelerator to make a quick decision

on some difficult to program task, e.g., cache prefetching. However, operating system

operations must be fast. The operating system cannot afford to have DANA tied

up with a long running learning transaction that could run overnight. The normal

operating system concept of process niceness could be utilized to make it safer for the

operating system to use a hardware accelerator like DANA by either putting some

hard bound on the latency of a transaction or ensuring that a transaction will proceed

as fast as possible.

116

7.3.3 Asynchronous in-memory input–output queues

The asynchronous input–output queues of the ASID–NNID Table described in Sec-

tion 4.2.2 and shown in Figure 4·4 are not currently implemented. All communication

related to transaction initiation and input or output data transfer occur through the

command/response portion of the RoCC interface. The implementation and use of an

asynchronous in-memory interface requires further exploration. Specifically, the use

of a completely asynchronous interface allows X-FILES/DANA to do its own flow con-

trol independent of the command/response interface. Relatedly, this then naturally

allows one accelerator to operate on transactions from any core in the system. An

early version of X-FILES/DANA supported a parameterized number of RoCC connec-

tions to support acceleration of incident transactions from multiple cores. However,

this adds a substantial amount of overhead as all input lines need to be buffered and

undergo arbitration. This complexity can be avoided with the use of these in-memory

queues.

Nevertheless, for a proper implementation, X-FILES/DANA would need to par-

ticipate in the cache coherency protocol in a way different from what is currently

provided by the RoCC interface. Specifically, both the L1 and L2 interfaces that the

RoCC interface provides do not allow for explicit use of Tilelink 1 probes that would

act as doorbells telling X-FILES/DANA that new data is available. Alternatively, and

naively, X-FILES/DANA would need to actively poll specific memory regions to look

for new transaction packets to process. This is both inefficient from the perspective

of X-FILES/DANA and can wreak havoc to the caches. Broadly, modifications to the

existing ASID–NNID Table require investigation for ways to improve the asynchronicity

of X-FILES backends.

1Tilelink is a protocol-agnostic implementation of a cache coherency substrate.

117

7.3.4 New X-FILES backends

While we present and discuss the architecture of DANA at length, DANA is only

one possible X-FILES backend. Our design of X-FILES user and supervisor software,

supervisor data structures, and the X-FILES Hardware Arbiter were all done to ensure

that new machine learning accelerators could benefit from all the existing X-FILES

infrastructure. The limitations of DANA, as outlined in Section 7.2, can be largely

remedied with a new architecture that allows for explicit communication between

PEs. Direct PE to PE communication improves the efficiency of the system, provides

a more natural architecture, and, critically, removes the Scratchpad Memories as

bottlenecks for communication. A generic architecture improving DANA in this way

would likely be of either dataflow or systolic array varieties.

Alternatively, and addressing criticism of MLP neural network accelerators, new

backends for more topical neural network flavors can be developed. These include, but

are not limited to, Convolutional Neural Networks, Recurrent Neural Networks (in-

cluding LSTM), and Deep Belief Networks (stacked Restricted Boltzmann Machines).

Nevertheless, the use of these new backends requires substantial rearchitecting of the

Configuration Cache and the PEs. The Configuration Cache needs to support larger

neural network configurations on the order of tens to hundreds of megabytes. The

notion of caching these configurations locally becomes nonsensical due to existing

memory technologies (though advances in 3D stacking and nonvolatile memory tech-

nologies may provide direct ways forward). Hence, the Configuration Cache begins to

look much more like a direct memory access unit optimized for reading neural network

configurations. The PEs would need to be modified, in addition to dataflow/systolic

array architectures, to support new types of operations and activation functions. Ar-

guably, the PEs should be highly programmable to align with whatever new flavor of

neural network becomes popular in the machine learning community.

118

7.3.5 Linux kernel modifications

Modifications to the Linux kernel to support the X-FILES are in progress and will be

made available publicly once completed. More generally, operating system support for

accelerators tightly coupled with a microprocessor and having access to the memory

hierarchy is likely needed. The breakdown of Dennard scaling and the tapering off

of Moore’s Law have resulted in the modern area of computer engineering being

christened the “Golden Age of Architecture.” Consequently, there exist numerous

opportunities for systems directly interacting with the hardware (the operating system

and its device drivers) to evolve simultaneously.

7.4 Final Remarks

In summary, we propose, implement, and validate a multi-transaction model of neural

network computation and acceleration and make our work available to the community.

With this work we have necessarily taken and applied a holistic, system level view,

encompassing hardware design as well as user and supervisor software development

to neural network computation. It is our firm belief that advances in the field of

electrical and computer engineering are increasingly requiring such a broad base of

knowledge and collaboration across departments and specialties.

119

References

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow,
I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster,
M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning on
heterogeneous systems. Software available from tensorflow.org.

[Agarwal et al., 2009] Agarwal, A., Rinard, M., Sidiroglou, S., Misailovic, S., and
Hoffmann, H. (2009). Using code perforation to improve performance, reduce
energy consumption, and respond to failures. Technical Report MIT-CSAIL-
TR-2009-042, Massachusetts Institute of Technology.

[Al-Rfou et al., 2016] Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bah-
danau, D., Ballas, N., Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., Bengio,
Y., Bergeron, A., Bergstra, J., Bisson, V., Bleecher Snyder, J., Bouchard, N.,
Boulanger-Lewandowski, N., Bouthillier, X., de Brébisson, A., Breuleux, O.,
Carrier, P.-L., Cho, K., Chorowski, J., Christiano, P., Cooijmans, T., Côté,
M.-A., Côté, M., Courville, A., Dauphin, Y. N., Delalleau, O., Demouth, J.,
Desjardins, G., Dieleman, S., Dinh, L., Ducoffe, M., Dumoulin, V., Ebrahimi
Kahou, S., Erhan, D., Fan, Z., Firat, O., Germain, M., Glorot, X., Goodfellow,
I., Graham, M., Gulcehre, C., Hamel, P., Harlouchet, I., Heng, J.-P., Hidasi,
B., Honari, S., Jain, A., Jean, S., Jia, K., Korobov, M., Kulkarni, V., Lamb,
A., Lamblin, P., Larsen, E., Laurent, C., Lee, S., Lefrancois, S., Lemieux, S.,
Léonard, N., Lin, Z., Livezey, J. A., Lorenz, C., Lowin, J., Ma, Q., Manzagol,
P.-A., Mastropietro, O., McGibbon, R. T., Memisevic, R., van Merriënboer, B.,
Michalski, V., Mirza, M., Orlandi, A., Pal, C., Pascanu, R., Pezeshki, M., Raffel,
C., Renshaw, D., Rocklin, M., Romero, A., Roth, M., Sadowski, P., Salvatier, J.,
Savard, F., Schlüter, J., Schulman, J., Schwartz, G., Serban, I. V., Serdyuk, D.,
Shabanian, S., Simon, E., Spieckermann, S., Subramanyam, S. R., Sygnowski,
J., Tanguay, J., van Tulder, G., Turian, J., Urban, S., Vincent, P., Visin, F.,
de Vries, H., Warde-Farley, D., Webb, D. J., Willson, M., Xu, K., Xue, L., Yao,
L., Zhang, S., and Zhang, Y. (2016). Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-prints, abs/1605.02688.

[Amant et al., 2014] Amant, R. S., Yazdanbakhsh, A., Park, J., Thwaites, B., Es-

120

maeilzadeh, H., Hassibi, A., Ceze, L., and Burger, D. (2014). General-purpose
code acceleration with limited-precision analog computation. In ACM/IEEE
41st International Symposium on Computer Architecture, ISCA 2014, Minneapo-
lis, MN, USA, June 14-18, 2014, pages 505–516.

[Asanović et al., 1992] Asanović, K., Beck, J., Kingsbury, B. E. D., Kohn, P., Mor-
gan, N., and Wawrzynek, J. (1992). Spert: a vliw/simd microprocessor for
artificial neural network computations. In In Proceedings of the International
Conference on Application Specific Array Processors, 1992., pages 178–190.

[Bachrach et al., 2012] Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A.,
Aviz̆ienis, R., Wawrzynek, J., and Asanović, K. (2012). Chisel: Constructing
hardware in a scala embedded language. In 49th ACM/EDAC/IEEE Design
Automation Conference (DAC), 2012, pages 1212–1221.

[Bengio, 2009] Bengio, Y. (2009). Learning deep architectures for AI. Foundations
and Trends in Machine Learning, 2(1):1–127.

[Bienia, 2011] Bienia, C. (2011). Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University.

[Binkert et al., 2011] Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi,
A., Basu, A., Hestness, J., Hower, D. R., Krishna, T., Sardashti, S., Sen, R.,
Sewell, K., Shoaib, M., Vaish, N., Hill, M. D., and Wood, D. A. (2011). The
gem5 simulator. SIGARCH Computer Architecture News, 39(2):1–7.

[Boston University Integrated Circuits and Systems Group, 2016] Boston University
Integrated Circuits and Systems Group (2016). X-files/dana github repository.
Online: https://github.com/bu-icsg/xfiles-dana.

[Carbin et al., 2012] Carbin, M., Kim, D., Misailovic, S., and Rinard, M. C. (2012).
Proving acceptability properties of relaxed nondeterministic approximate pro-
grams. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, pages 169–180, New York, NY,
USA. ACM.

[Carbin et al., 2013] Carbin, M., Kim, D., Misailovic, S., and Rinard, M. C. (2013).
Verified integrity properties for safe approximate program transformations. In
Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation and
Program Manipulation, PEPM ’13, pages 63–66, New York, NY, USA. ACM.

[Chen et al., 2012] Chen, T., Chen, Y., Duranton, M., Guo, Q., Hashmi, A., Lipasti,
M., Nere, A., Qiu, S., Sebag, M., and Temam, O. (2012). Benchnn: On the
broad potential application scope of hardware neural network accelerators. In
IEEE International Symposium on Workload Characterization (IISWC), pages
36–45.

[Chen et al., 2014a] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and
Temam, O. (2014a). Diannao: a small-footprint high-throughput accelerator

https://github.com/bu-icsg/xfiles-dana

121

for ubiquitous machine-learning. In Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, Salt Lake City, UT, USA,
March 1-5, 2014, pages 269–284.

[Chen et al., 2014b] Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L.,
Chen, T., Xu, Z., Sun, N., and Temam, O. (2014b). Dadiannao: A machine-
learning supercomputer. In 47th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 2014, Cambridge, United Kingdom, December 13-
17, 2014, pages 609–622.

[Chetlur et al., 2014] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J.,
Catanzaro, B., and Shelhamer, E. (2014). cudnn: Efficient primitives for deep
learning. CoRR, abs/1410.0759.

[Chilimbi et al., 2014] Chilimbi, T. M., Suzue, Y., Apacible, J., and Kalyanaraman,
K. (2014). Project adam: Building an efficient and scalable deep learning
training system. In 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014., pages
571–582.

[Chippa et al., 2013] Chippa, V. K., Chakradhar, S. T., Roy, K., and Raghunathan,
A. (2013). Analysis and characterization of inherent application resilience for
approximate computing. In The 50th Annual Design Automation Conference
2013, DAC ’13, Austin, TX, USA, May 29 - June 07, 2013, pages 113:1–113:9.

[Cobham, 1965] Cobham, A. (1965). The intrinsic computational difficulty of func-
tions. In Bar-Hillel, Y., editor, Logic, Methodology and Philosophy of Science:
Proceedings of the 1964 International Congress (Studies in Logic and the Foun-
dations of Mathematics), pages 24–30. North-Holland Publishing.

[Collobert et al.,] Collobert, R., Kavukcuoglu, K., and Farabet, C. Torch7:
A matlab-like environment for machine learning. Available from:
http://publications.idiap.ch/downloads/papers/2011/Collobert_

NIPSWORKSHOP_2011.pdf.

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals and Systems, 2(4):303–314.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.
(2009). ImageNet: A Large-Scale Hierarchical Image Database. In Computer
Vision and Pattern Recognition.

[Dreyfus, 1965] Dreyfus, H. L. (1965). Alchemy and artificial intelligence. RAND
Paper P-3244. Santa Monica, CA: Rand Corp.

[Eldridge et al., 2014] Eldridge, S., Raudies, F., Zou, D., and Joshi, A. (2014). Neu-
ral network-based accelerators for transcendental function approximation. In
Great Lakes Symposium on VLSI 2014, GLSVLSI ’14, Houston, TX, USA -
May 21 - 23, 2014, pages 169–174.

http://publications.idiap.ch/downloads/papers/2011/Collobert_NIPSWORKSHOP_2011.pdf
http://publications.idiap.ch/downloads/papers/2011/Collobert_NIPSWORKSHOP_2011.pdf

122

[Eldridge et al., 2015] Eldridge, S., Waterland, A., Seltzer, M., Appavoo, J., and
Joshi, A. (2015). Towards general-purpose neural network computing. In 2015
International Conference on Parallel Architecture and Compilation, PACT 2015,
San Francisco, CA, USA, October 18-21, 2015, pages 99–112.

[Esmaeilzadeh et al., 2012a] Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger,
D. (2012a). Architecture support for disciplined approximate programming. In
Proceedings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2012, London, UK,
March 3-7, 2012, pages 301–312.

[Esmaeilzadeh et al., 2012b] Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger,
D. (2012b). Neural acceleration for general-purpose approximate programs. In
45th Annual IEEE/ACM International Symposium on Microarchitecture, MI-
CRO 2012, Vancouver, BC, Canada, December 1-5, 2012, pages 449–460.

[Fakhraie and Smith, 1997] Fakhraie, S. M. and Smith, K. C. (1997). VLSI Compat-
ible Implementations for Artificial Neural Networks. Springer.

[Farabet et al., 2013] Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013).
Learning hierarchical features for scene labeling. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1915–1929.

[Fleming, 1953] Fleming, I. (1953). Casino Royale. Jonathan Cape, London, UK.

[Fukushima, 1980] Fukushima, K. (1980). Neocognitron: A self-organizing neural
network model for a mechanism of pattern recognition unaffected by shift in
position. Biological Cybernetics, 36(4):193–202.

[Graves et al., 2014] Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing
machines. CoRR, abs/1410.5401.

[Grigorian et al., 2015] Grigorian, B., Farahpour, N., and Reinman, G. (2015).
BRAINIAC: bringing reliable accuracy into neurally-implemented approximate
computing. In 21st IEEE International Symposium on High Performance Com-
puter Architecture, HPCA 2015, Burlingame, CA, USA, February 7-11, 2015,
pages 615–626.

[Grigorian and Reinman, 2014] Grigorian, B. and Reinman, G. (2014). Improving
coverage and reliability in approximate computing using application-specific,
light-weight checks. In 1st Workshop on Approximate Computing Across the
System Stack.

[Han et al., 2015] Han, S., Mao, H., and Dally, W. J. (2015). Deep compression:
Compressing deep neural network with pruning, trained quantization and huff-
man coding. CoRR, abs/1510.00149.

[Hemingway, 1926] Hemingway, E. (1926). The Sun Also Rises. Scribner’s, New
York City, New York.

123

[Hinton et al., 2006] Hinton, G. E., Osindero, S., and Teh, Y. W. (2006). A fast
learning algorithm for deep belief nets. Neural Computation, 18(7):1527–1554.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory. Neural Computation, 9(8):1735–1780.

[Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer feedfor-
ward networks. Neural Networks, 4(2):251–257.

[Hubel and Wiesel, 1965] Hubel, D. H. and Wiesel, T. N. (1965). Receptive fields
and functional architecture in two nonstriate visual areas (18 and 19) of the cat.
Journal of Neurophysiology, 28:229–289.

[Jia et al., 2014] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick,
R. B., Guadarrama, S., and Darrell, T. (2014). Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the ACM International Conference
on Multimedia, MM ’14, Orlando, FL, USA, November 03 - 07, 2014, pages
675–678.

[Jonas and Kording, 2016] Jonas, E. and Kording, K. (2016). Could a neuroscientist
understand a microprocessor? bioRxiv.

[Justo et al., 1998] Justo, J. a. F., Bazant, M. Z., Kaxiras, E., Bulatov, V. V., and
Yip, S. (1998). Interatomic potential for silicon defects and disordered phases.
Physical Review B, 58:2539–2550.

[Kahng and Kang, 2012] Kahng, A. B. and Kang, S. (2012). Accuracy-configurable
adder for approximate arithmetic designs. In The 49th Annual Design Automa-
tion Conference 2012, DAC ’12, San Francisco, CA, USA, June 3-7, 2012, pages
820–825.

[Kestur et al., 2012] Kestur, S., Park, M. S., Sabarad, J., Dantara, D., Narayanan,
V., Chen, Y., and Khosla, D. (2012). Emulating mammalian vision on recon-
figurable hardware. In 2012 IEEE 20th Annual International Symposium on
Field-Programmable Custom Computing Machines, FCCM 2012, 29 April - 1
May 2012, Toronto, Ontario, Canada, pages 141–148.

[Khan et al., 2008] Khan, M. M., Lester, D. R., Plana, L. A., Rast, A. D., Jin, X.,
Painkras, E., and Furber, S. B. (2008). Spinnaker: Mapping neural networks
onto a massively-parallel chip multiprocessor. In Proceedings of the International
Joint Conference on Neural Networks, IJCNN 2008, part of the IEEE World
Congress on Computational Intelligence, WCCI 2008, Hong Kong, China, June
1-6, 2008, pages 2849–2856.

[Lazebnik, 2004] Lazebnik, Y. (2004). Can a biologist fix a radio? — or, what i
learned while studying apoptosis. Biochemistry (Moscow), 69(12):1403–1406.

[Lecun et al., 1998] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324.

124

[Lee et al., 2014] Lee, Y., Waterman, A., Avizienis, R., Cook, H., Sun, C., Stojanović,
V., and Asanović, K. (2014). A 45nm 1.3ghz 16.7 double-precision gflops/w
risc-v processor with vector accelerators. In 40th European Solid State Circuits
Conference (ESSCIRC), pages 199–202.

[Li et al., 2009] Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M.,
and Jouppi, N. P. (2009). Mcpat: an integrated power, area, and timing mod-
eling framework for multicore and manycore architectures. In 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-42 2009),
December 12-16, 2009, New York, New York, USA, pages 469–480.

[Lighthill, 1973] Lighthill, J. (1973). Artificial intelligence: A general survey. In
Artificial Intelligence: A Paper Symposium. London: Science Research Council.

[Liu et al., 2015] Liu, D., Chen, T., Liu, S., Zhou, J., Zhou, S., Teman, O., Feng,
X., Zhou, X., and Chen, Y. (2015). Pudiannao: A polyvalent machine learning
accelerator. In Proceedings of the Twentieth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages
369–381. ACM.

[Mahajan et al., 2016] Mahajan, D., Park, J., Amaro, E., Sharma, H., Yazdan-
bakhsh, A., Kim, J. K., and Esmaeilzadeh, H. (2016). TABLA: A unified
template-based framework for accelerating statistical machine learning. In 2016
IEEE International Symposium on High Performance Computer Architecture,
HPCA 2016, Barcelona, Spain, March 12-16, 2016, pages 14–26.

[Markoff, t B1] Markoff, J. (2014, August 8, Sect B1). Ibm develops a new chip that
functions like a brain. The New York Times.

[McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A logical cal-
culus of the ideas immanent in nervous activity. The bulletin of mathematical
biophysics, 5(4):115–133.

[Michie, 1968] Michie, D. (1968). Memo functions and machine learning. Nature,
218(5136):19–22.

[Minsky and Papert, 1987] Minsky, M. and Papert, S. (1987). Perceptrons - an
introduction to computational geometry. MIT Press.

[Moreau et al., 2015] Moreau, T., Wyse, M., Nelson, J., Sampson, A., Esmaeilzadeh,
H., Ceze, L., and Oskin, M. (2015). SNNAP: approximate computing on pro-
grammable socs via neural acceleration. In 21st IEEE International Symposium
on High Performance Computer Architecture, HPCA 2015, Burlingame, CA,
USA, February 7-11, 2015, pages 603–614.

[Morgan et al., 1990] Morgan, N., Beck, J., Kohn, P., Bilmes, J., Allman, E., and
Beer, J. (1990). The rap: a ring array processor for layered network calculations.
In Proceedings of the International Conference on Application Specific Array
Processors, 1990., pages 296–308.

125

[Morgan et al., 1992] Morgan, N., Beck, J., Kohn, P., Bilmes, J., Allman, E., and
Beer, J. (1992). The ring array processor: A multiprocessing peripheral for
connectionist applications. Journal of Parallel and Distributed Computing,
14(3):248–259.

[Nissen, 2003] Nissen, S. (2003). Implementation of a fast artificial neural network
library (fann). Technical report, Department of Computer Science University of
Copenhagen (DIKU). http://fann.sf.net.

[Preissl et al., 2012] Preissl, R., Wong, T. M., Datta, P., Flickner, M., Singh, R.,
Esser, S. K., Risk, W. P., Simon, H. D., and Modha, D. S. (2012). Compass: a
scalable simulator for an architecture for cognitive computing. In SC Conference
on High Performance Computing Networking, Storage and Analysis, SC ’12, Salt
Lake City, UT, USA - November 11 - 15, 2012, page 54.

[Przytula, 1991] Przytula, K. W. (1991). Parallel digital implementations of neural
networks. In Proceedings of the International Conference on Application Specific
Array Processors, 1991, pages 162–176.

[Raudies et al., 2014] Raudies, F., Eldridge, S., Joshi, A., and Versace, M. (2014).
Learning to navigate in a virtual world using optic flow and stereo disparity
signals. Artificial Life and Robotics, 19(2):157–169.

[Reagen et al., 2016] Reagen, B., Whatmough, P. N., Adolf, R., Rama, S., Lee, H.,
Lee, S. K., Hernández-Lobato, J. M., Wei, G., and Brooks, D. M. (2016). Min-
erva: Enabling low-power, highly-accurate deep neural network accelerators. In
43rd ACM/IEEE Annual International Symposium on Computer Architecture,
ISCA 2016, Seoul, South Korea, June 18-22, 2016, pages 267–278.

[Rinard, 2007] Rinard, M. C. (2007). Using early phase termination to eliminate
load imbalances at barrier synchronization points. In Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal,
Quebec, Canada, pages 369–386.

[RISC-V Foundation, 2016a] RISC-V Foundation (2016a). Risc-v port of the linux
kernel. Online: https://github.com/riscv/riscv-linux.

[RISC-V Foundation, 2016b] RISC-V Foundation (2016b). Risc-v proxy kernel
github repository. Online: https://github.com/riscv/riscv-pk.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: a probabilistic model
for information storage and organization in the brain. Psycholigcal Review,
65(6):386.

[Rumelhart et al., 1988] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988).
Learning representations by back-propagating errors. Cognitive modeling, 5(3):1.

[Sampson et al., 2011] Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D.,
Ceze, L., and Grossman, D. (2011). Enerj: approximate data types for safe and

https://github.com/riscv/riscv-linux
https://github.com/riscv/riscv-pk

126

general low-power computation. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2011,
San Jose, CA, USA, June 4-8, 2011, pages 164–174.

[Sampson et al., 2013] Sampson, A., Nelson, J., Strauss, K., and Ceze, L. (2013).
Approximate storage in solid-state memories. In The 46th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-46, Davis, CA, USA,
December 7-11, 2013, pages 25–36.

[Savich et al., 2007] Savich, A. W., Moussa, M., and Areibi, S. (2007). The impact of
arithmetic representation on implementing MLP-BP on fpgas: A study. IEEE
Transactions on Neural Networks, 18(1):240–252.

[Shannon, 1938] Shannon, C. E. (1938). A symbolic analysis of relay and switch-
ing circuits. Transactions of the American Institute of Electrical Engineers,
57(12):713–723.

[Sharma et al., 2016] Sharma, H., Park, J., Amaro, E., Thwaites, B., Kotha, P.,
Gupta, A., Kim, J. K., Mishra, A., and Esmaeilzadeh, H. (2016). Dnnweaver:
From high-level deep network models to fpga acceleration. In the Workshop on
Cognitive Architectures.

[Shivakumar and Jouppi, 2001] Shivakumar, P. and Jouppi, N. P. (2001). Cacti 3.0:
An integrated cache timing, power, and area model. Technical Report 2001/2,
Compaq Computer Corporation.

[Sidiroglou-Douskos et al., 2011] Sidiroglou-Douskos, S., Misailovic, S., Hoffmann,
H., and Rinard, M. C. (2011). Managing performance vs. accuracy trade-offs
with loop perforation. In SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-19) and ESEC’11: 13th Euro-
pean Software Engineering Conference (ESEC-13), Szeged, Hungary, September
5-9, 2011, pages 124–134.

[Siegelmann and Sontag, 1995] Siegelmann, H. T. and Sontag, E. D. (1995). On the
computational power of neural nets. Journal of Computer System Sciences,
50(1):132–150.

[Stine et al., 2007] Stine, J. E., Castellanos, I. D., Wood, M. H., Henson, J., Love,
F., Davis, W. R., Franzon, P. D., Bucher, M., Basavarajaiah, S., Oh, J., and
Jenkal, R. (2007). Freepdk: An open-source variation-aware design kit. In IEEE
International Conference on Microelectronic Systems Education, MSE ’07, San
Diego, CA, USA, June 3-4, 2007, pages 173–174.

[The Cure, 1980] The Cure (1980). A forest. Seventeen Seconds.

[The Cure, 1985] The Cure (1985). Push. The Head On The Door.

[Turing, 1950] Turing, A. M. (1950). Computing machinery and intelligence. Mind,
59(236):433–460.

127

[UC Berkeley Architecture Research Group, 2016] UC Berkeley Architecture Re-
search Group (2016). Rocket chip github repository. Online: https:

//github.com/ucb-bar/rocket-chip.

[Venkataramani et al., 2013] Venkataramani, S., Chippa, V. K., Chakradhar, S. T.,
Roy, K., and Raghunathan, A. (2013). Quality programmable vector processors
for approximate computing. In The 46th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-46, Davis, CA, USA, December 7-11,
2013, pages 1–12.

[Venkatesh et al., 2010] Venkatesh, G., Sampson, J., Goulding, N., Garcia, S.,
Bryksin, V., Lugo-Martinez, J., Swanson, S., and Taylor, M. B. (2010). Conser-
vation cores: reducing the energy of mature computations. In Proceedings of the
15th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2010, Pittsburgh, Pennsylvania, USA,
March 13-17, 2010, pages 205–218.

[Vo et al., 2013] Vo, H., Lee, Y., Waterman, A., and Asanović, K. (2013). A case
for os-friendly hardware accelerators. In Workshop on the Interaction Between
Operating System and Computer Architecture.

[Volder, 1959] Volder, J. E. (1959). The CORDIC trigonometric computing tech-
nique. IRE Transactions on Electronic Computers, 8(3):330–334.

[von Neumann, 1956] von Neumann, J. (1956). Probabilistic logics and the synthesis
of reliable organisms from unreliable components. Automata studies, 34:43–98.

[von Neumann, 1993] von Neumann, J. (1993). First draft of a report on the edvac.
IEEE Annals of the History of Computing, 15(4):27–75.

[Walther, 1971] Walther, J. S. (1971). A unified algorithm for elementary functions.
In American Federation of Information Processing Societies: AFIPS Conference
Proceedings: 1971 Spring Joint Computer Conference, Atlantic City, NJ, USA,
May 18-20, 1971, pages 379–385.

[Waterland et al., 2014] Waterland, A., Angelino, E., Adams, R. P., Appavoo, J., and
Seltzer, M. I. (2014). ASC: automatically scalable computation. In Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’14, Salt
Lake City, UT, USA, March 1-5, 2014, pages 575–590.

[Waterland et al., 2012] Waterland, A., Appavoo, J., and Seltzer, M. (2012). Paral-
lelization by simulated tunneling. In 4th USENIX Workshop on Hot Topics in
Parallelism, HotPar’12, Berkeley, CA, USA, June 7-8, 2012.

[Waterman et al., 2015] Waterman, A., Lee, Y., Aviz̆ienis, R., Patterson, D. A., and
Asanović, K. (2015). The risc-v instruction set manual volume ii: Privileged
architecture version 1.7. Technical Report UCB/EECS-2015-49, EECS Depart-
ment, University of California, Berkeley.

https://github.com/ucb-bar/rocket-chip
https://github.com/ucb-bar/rocket-chip

128

[Waterman et al., 2014] Waterman, A., Lee, Y., Patterson, D. A., and Asanović, K.
(2014). The risc-v instruction set manual, volume i: User-level isa, version
2.0. Technical Report UCB/EECS-2014-54, EECS Department, University of
California, Berkeley.

[Wawrzynek et al., 1996] Wawrzynek, J., Asanović, K., Kingsbury, B., Johnson, D.,
Beck, J., and Morgan, N. (1996). Spert-ii: a vector microprocessor system.
Computer, 29(3):79–86.

[Whitehead and Russell, 1912] Whitehead, A. N. and Russell, B. (1912). Principia
mathematica, volume 2. University Press.

[Xi et al., 2015] Xi, S. L., Jacobson, H., Bose, P., Wei, G. Y., and Brooks, D. (2015).
Quantifying sources of error in mcpat and potential impacts on architectural
studies. In 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), pages 577–589.

[Yazdanbakhsh et al., 2016] Yazdanbakhsh, A., Mahajan, D., P., L.-K., and Es-
maeilzadeh, H. (2016). Axbench: A benchmark suite for approximate computing
across the system stack. Technical Report GT-CS-16-01, Georgia Tech.

[Yazdanbakhsh et al., 2015] Yazdanbakhsh, A., Park, J., Sharma, H., Lotfi-Kamran,
P., and Esmaeilzadeh, H. (2015). Neural acceleration for GPU throughput
processors. In Proceedings of the 48th International Symposium on Microarchi-
tecture, MICRO 2015, Waikiki, HI, USA, December 5-9, 2015, pages 482–493.

[Zimmer et al., 2016] Zimmer, B., Lee, Y., Puggelli, A., Kwak, J., Jevti, R., Keller,
B., Bailey, S., Blagojevi, M., Chiu, P. F., Le, H. P., Chen, P. H., Sutardja, N.,
Aviz̆ienis, R., Waterman, A., Richards, B., Flatresse, P., Alon, E., Asanović, K.,
and Nikolić, B. (2016). A risc-v vector processor with simultaneous-switching
switched-capacitor dc–dc converters in 28 nm fdsoi. IEEE Journal of Solid-State
Circuits, 51(4):930–942.

129

Curriculum Vitae

Schuyler Eldridge

• Email: schuye@bu.edu

• Phone: (914) 382-1315

Education

• PhD, Computer Engineering, Boston University 2016

Boston, MA

Thesis: Neural Network Computing Using On-chip Accelerators

• BS, Electrical Engineering, Boston University 2010

Boston, MA

Work Experience

• IBM T. J. Watson Research Center August 2016–Present

Yorktown Heights, NY

Postdoctoral Researcher

• Intel Corporation May 2011–September 2011

Hudson, MA

Graduate Technical Intern

• Intel Corporation June 2010–August 2010

Hudson, MA

Graduate Technical Intern

Conference Publications

Eldridge, S., Waterland, A., Seltzer, M., Appavoo, J., and Joshi, A. Towards
General-Purpose Neural Network Computing in Parallel Architectures and Com-
pilation Techniques (PACT), 2015.

Eldridge, S., Raudies, F., Zou, D., and Joshi, A. Neural Network-based Accelerators
for Transcendental Function Approximation in Great Lakes Symposium on VLSI
(GLSVLSI), 2014.

130

Journal Publications

Raudies, F., Eldridge, S., Joshi, A., and Versace, M. Learning to Navigate in a
Virtual World using Optic Flow and Stereo Disparity Signals. Artificial Life
and Robotics 19.2 (2014) pp. 157–169. Springer, 2014.

Workshop Presentations and Posters

Eldridge, S., Dong, H., Unger, T., Sahaya Louis, M., Delshad Tehrani, L., Appavoo,
J., and Joshi, A., X-FILES/DANA: RISC-V Hardware/Software for Neural Net-
works (poster) at Fourth RISC-V Workshop, 2016.

Eldridge, S., Sahaya-Louis, M., Unger, T., Appavoo, J. and Joshi, A., Learning-
on-chip using Fixed Point Arithmetic for Neural Network Accelerators (poster)
at the Design Automation Conference (DAC), 2016.

Eldridge, S., Unger, T., Sahaya-Louis, M., Waterland, A., Seltzer, M., Appavoo,
J., and Joshi, A., Neural Networks as Function Primitives: Software/Hardware
Support with X-FILES/DANA (poster) at the Boston Area Architecture Con-
ference (BARC), 2016.

Eldridge, S. and Joshi, A., Exploiting Hidden Layer Modular Redundancy for
Fault-Tolerance in Neural Network Accelerators (presentation) at the Boston
Area Architecture Workshop (BARC), 2015.

Appavoo, J., Waterland, A., Zhao, K., Eldridge, S., Joshi, A., Seltzer, M., Homer, S.
Programmable Smart Machines: A Hybrid Neuromorphic Approach to General
Purpose Computation in workshop on Neuromorphic Architectures (NeuroArch),
2014.

Eldridge, S., Raudies, F., and Joshi, A., Approximate Computation Using a Neu-
ralized FPU at the Brain Inspired Computing Workshop (BIC), 2013.

Technical Reports

Raudies, F., Eldridge, S., Joshi, A., and Versace, M., Reinforcement Learning of
Visual Navigation Using Distances Extracted from Stereo Disparity or Optic
Flow. BU/ECE-2013-1, 2013.

Patents

Gopal, V., Guilford, J.D., Eldridge, S., Wolrich, G.M., Ozturk, E., and Feghali,
W.K., Digest Generation. US Patent 9,292,548, 2016.

	Introduction
	Background
	An ontology for computation
	Machine learning accelerators of the future

	Motivating Applications
	Outline of Contributions
	Thesis statement
	Contributions

	Dissertation Outline

	Background
	A Brief History of Neural Networks
	Neural networks and early computer science
	Criticisms of neural networks and artificial intelligence
	Modern resurgence as machine learning

	Neural Network Software and Hardware
	Software
	Hardware
	Context of this dissertation

	T-fnApprox: Hardware Support for Fine-Grained Function Approximation using MLPs
	Function Approximation
	CORDIC and Unified CORDIC

	A Fixed-topology Neural Network Accelerator
	Approximation capability

	Evaluation
	Energy efficiency
	Comparison against traditional floating point
	Affect on application benchmarks

	Approximation and Fixed-topology Neural Network Accelerators

	X-FILES: Software/Hardware for Neural Networks as First Class Primitives
	Motivation: Neural Networks as Function Primitives
	X-FILES: Software and Hardware for Transaction Management
	X-FILES Hardware Arbiter
	Supervisor data structures: the ASID–NNID Table
	Supervisor and user API

	Operating System Integration
	RISC-V Proxy Kernel
	RISCV-V Linux port

	Summary

	DANA: An X-FILES Accelerator for Neural Network Computation
	Motivation and Guidelines for a General Neural Network Accelerator
	DANA: A Dynamically Allocated Neural Network Accelerator
	Transaction Table
	Configuration Cache
	ASID–NNID Table Walker
	Control module
	Processing Elements
	Scratchpad memories

	Operation for Neural Network Transactions
	Feedforward computation
	Learning

	Summary

	Evaluation of X-FILES/DANA
	Different Implementations of X-FILES/DANA
	X-FILES/DANA in SystemVerilog
	Power and latency
	Single and multi-transaction throughput

	Rocket + X-FILES/DANA
	Summary

	Conclusion
	Summary of Contributions
	Limitations of X-FILES/DANA
	Future Work
	Transaction granularity
	Variable transaction priority
	Asynchronous in-memory input–output queues
	New X-FILES backends
	Linux kernel modifications

	Final Remarks

	References
	Curriculum Vitae

