192 research outputs found

    Inclusive Human Intention Prediction with Wearable Sensors: Machine Learning Techniques for the Reaching Task Use Case †

    Get PDF
    Human intentions prediction is gaining importance with the increase of human-robot interaction challenges in several contexts, like industrial and clinical. This paper compares Linear Discriminant Analysis (LDA) and Random Forest (RF) performance in predicting the intention of moving towards a target during reaching movements, on ten subjects wearing four electromagnetic sensors. LDA and RF prediction accuracy is compared with respect to observation-sample dimension and noise presence, training and prediction time. Both algorithms achieved good accuracy, which improves as the sample dimension increases, although LDA presents better results for the current dataset

    The Correlation framework: bridging the gap between modeling and analysis for 3D woven composites

    Get PDF
    International audienceA large variety of dierent descriptors can be employed for describing 3D woven composites. Each of them is targeted to a specic application, ranging from design, weaving, molding, impregnation down to non-destructive testing, imaging and numerical modeling of the actual micro-structure. In order to relate these dierent representations, it is proposed herewith to rely on the inherent weaving pattern as an intrinsic common feature, and to resort to images as a common language to guaranty the continuity of information. To connect these 3D images (either real or synthesized), Digital Volume Correlation (DVC) is called for in order to exploit the conservation of topology. A complete test scenario is devised in which dierent manufactured woven samples are compared to the theoretical textile arrangement. The results conrm the eectiveness of the method

    A methodology to detect and characterize uplift phenomena in urban areas using Sentinel-1 data

    Get PDF
    This paper presents a methodology to exploit the Persistent Scatterer Interferometry (PSI) time series acquired by Sentinel-1 sensors for the detection and characterization of uplift phenomena in urban areas. The methodology has been applied to the Tower Hamlets Council area of London (United Kingdom) using Sentinel-1 data covering the period 2015–2017. The test area is a representative high-urbanized site affected by geohazards due to natural processes such as compaction of recent deposits, and also anthropogenic causes due to groundwater management and engineering works. The methodology has allowed the detection and characterization of a 5 km2 area recording average uplift rates of 7 mm/year and a maximum rate of 18 mm/year in the period May 2015–March 2017. Furthermore, the analysis of the Sentinel-1 time series highlights that starting from August 2016 uplift rates began to decrease. A comparison between the uplift rates and urban developments as well as geological, geotechnical, and hydrogeological factors suggests that the ground displacements occur in a particular geological context and are mainly attributed to the swelling of clayey soils. The detected uplift could be attributed to a transient effect of the groundwater rebound after completion of dewatering works for the recent underground constructions

    The second data release from the European Pulsar Timing Array:IV. Implications for massive black holes, dark matter, and the early Universe

    Get PDF
    The European Pulsar Timing Array (EPTA) and Indian Pulsar Timing Array (InPTA) collaborations have measured a low-frequency common signal in the combination of their second and first data releases, respectively, with the correlation properties of a gravitational wave background (GWB). Such a signal may have its origin in a number of physical processes including a cosmic population of inspiralling supermassive black hole binaries (SMBHBs); inflation, phase transitions, cosmic strings, and tensor mode generation by the non-linear evolution of scalar perturbations in the early Universe; and oscillations of the Galactic potential in the presence of ultra-light dark matter (ULDM). At the current stage of emerging evidence, it is impossible to discriminate among the different origins. Therefore, for this paper, we consider each process separately, and investigated the implications of the signal under the hypothesis that it is generated by that specific process. We find that the signal is consistent with a cosmic population of inspiralling SMBHBs, and its relatively high amplitude can be used to place constraints on binary merger timescales and the SMBH-host galaxy scaling relations. If this origin is confirmed, this would be the first direct evidence that SMBHBs merge in nature, adding an important observational piece to the puzzle of structure formation and galaxy evolution. As for early Universe processes, the measurement would place tight constraints on the cosmic string tension and on the level of turbulence developed by first-order phase transitions. Other processes would require non-standard scenarios, such as a blue-tilted inflationary spectrum or an excess in the primordial spectrum of scalar perturbations at large wavenumbers. Finally, a ULDM origin of the detected signal is disfavoured, which leads to direct constraints on the abundance of ULDM in our Galaxy

    The second data release from the European Pulsar Timing Array:IV. Implications for massive black holes, dark matter, and the early Universe

    Get PDF
    The European Pulsar Timing Array (EPTA) and Indian Pulsar Timing Array (InPTA) collaborations have measured a low-frequency common signal in the combination of their second and first data releases, respectively, with the correlation properties of a gravitational wave background (GWB). Such a signal may have its origin in a number of physical processes including a cosmic population of inspiralling supermassive black hole binaries (SMBHBs); inflation, phase transitions, cosmic strings, and tensor mode generation by the non-linear evolution of scalar perturbations in the early Universe; and oscillations of the Galactic potential in the presence of ultra-light dark matter (ULDM). At the current stage of emerging evidence, it is impossible to discriminate among the different origins. Therefore, for this paper, we consider each process separately, and investigated the implications of the signal under the hypothesis that it is generated by that specific process. We find that the signal is consistent with a cosmic population of inspiralling SMBHBs, and its relatively high amplitude can be used to place constraints on binary merger timescales and the SMBH-host galaxy scaling relations. If this origin is confirmed, this would be the first direct evidence that SMBHBs merge in nature, adding an important observational piece to the puzzle of structure formation and galaxy evolution. As for early Universe processes, the measurement would place tight constraints on the cosmic string tension and on the level of turbulence developed by first-order phase transitions. Other processes would require non-standard scenarios, such as a blue-tilted inflationary spectrum or an excess in the primordial spectrum of scalar perturbations at large wavenumbers. Finally, a ULDM origin of the detected signal is disfavoured, which leads to direct constraints on the abundance of ULDM in our Galaxy

    The second data release from the European Pulsar Timing Array: IV. Implications for massive black holes, dark matter, and the early Universe

    Get PDF
    The European Pulsar Timing Array (EPTA) and Indian Pulsar Timing Array (InPTA) collaborations have measured a low-frequency common signal in the combination of their second and first data releases, respectively, with the correlation properties of a gravitational wave background (GWB). Such a signal may have its origin in a number of physical processes including a cosmic population of inspiralling supermassive black hole binaries (SMBHBs); inflation, phase transitions, cosmic strings, and tensor mode generation by the non-linear evolution of scalar perturbations in the early Universe; and oscillations of the Galactic potential in the presence of ultra-light dark matter (ULDM). At the current stage of emerging evidence, it is impossible to discriminate among the different origins. Therefore, for this paper, we consider each process separately, and investigated the implications of the signal under the hypothesis that it is generated by that specific process. We find that the signal is consistent with a cosmic population of inspiralling SMBHBs, and its relatively high amplitude can be used to place constraints on binary merger timescales and the SMBH-host galaxy scaling relations. If this origin is confirmed, this would be the first direct evidence that SMBHBs merge in nature, adding an important observational piece to the puzzle of structure formation and galaxy evolution. As for early Universe processes, the measurement would place tight constraints on the cosmic string tension and on the level of turbulence developed by first-order phase transitions. Other processes would require non-standard scenarios, such as a blue-tilted inflationary spectrum or an excess in the primordial spectrum of scalar perturbations at large wavenumbers. Finally, a ULDM origin of the detected signal is disfavoured, which leads to direct constraints on the abundance of ULDM in our Galaxy

    A methodology to detect and characterize uplift phenomena in urban areas using Sentinel-1 data

    Get PDF
    open6This paper presents a methodology to exploit the Persistent Scatterer Interferometry (PSI) time series acquired by Sentinel-1 sensors for the detection and characterization of uplift phenomena in urban areas. The methodology has been applied to the Tower Hamlets Council area of London (United Kingdom) using Sentinel-1 data covering the period 2015–2017. The test area is a representative high-urbanized site affected by geohazards due to natural processes such as compaction of recent deposits, and also anthropogenic causes due to groundwater management and engineering works. The methodology has allowed the detection and characterization of a 5 km2 area recording average uplift rates of 7 mm/year and a maximum rate of 18 mm/year in the period May 2015–March 2017. Furthermore, the analysis of the Sentinel-1 time series highlights that starting from August 2016 uplift rates began to decrease. A comparison between the uplift rates and urban developments as well as geological, geotechnical, and hydrogeological factors suggests that the ground displacements occur in a particular geological context and are mainly attributed to the swelling of clayey soils. The detected uplift could be attributed to a transient effect of the groundwater rebound after completion of dewatering works for the recent underground constructionsopenBonì, Roberta; BOSINO, ALBERTO; Meisina, Claudia; Novellino, Alessandro; Bateson, Luke; McCormack, HarryBonì, Roberta; Bosino, Alberto; Meisina, Claudia; Novellino, Alessandro; Bateson, Luke; Mccormack, Harr
    • …
    corecore