5 research outputs found

    Electrocatalytic Site Activity Enhancement via Orbital Overlap in A <sub>2</sub>MnRuO <sub>7</sub>(A = Dy <sup>3+</sup>, Ho <sup>3+</sup>, and Er <sup>3+</sup>) Pyrochlore Nanostructures

    Get PDF
    Oxygen electrocatalysis at transition metal oxides is one of the key challenges underpinning electrochemical energy conversion systems, involving a delicate interplay of the bulk electronic structure and surface coordination of the active sites. In this work, we investigate for the first time the structure-activity relationship of A2RuMnO7 (A = Dy3+, Ho3+, and Er3+) nanoparticles, demonstrating how orbital mixing of Ru, Mn, and O promotes high density of states at the appropriate energy range for oxygen electrocatalysis. The bulk structure and surface composition of these multicomponent pyrochlores are investigated by high-resolution transmission electron microscopy, X-ray diffraction, X-ray absorption spectroscopy, X-ray emission spectroscopy (XES), and X-ray photoemission spectroscopy (XPS). The materials exhibit high phase purity (cubic fcc with a space group Fd3\uaf m) in which variations in M-O bonds length are less than 1% upon replacing the A-site lanthanide. XES and XPS show that the mean oxidation state at the Mn-site as well as the nanoparticle surface composition was slightly affected by the lanthanide. The pyrochlore nanoparticles are significantly more active than the binary RuO2 and MnO2 toward the 4-electron oxygen reduction reaction in alkaline solutions. Interestingly, normalization of kinetic parameters by the number density of electroactive sites concludes that Dy2RuMnO7 shows twice higher activity than benchmark materials such as LaMnO3. Analysis of the electrochemical profiles supported by density functional theory calculations reveals that the origin of the enhanced catalytic activity is linked to the mixing of Ru and Mn d-orbitals and O p-orbitals at the conduction band which strongly overlap with the formal redox energy of O2 in solution. The activity enhancement strongly manifests in the case of Dy2RuMnO7 where the Ru/Mn ratio is closer to 1 in comparison with the Ho3+ and Er3+ analogs. These electronic effects are discussed in the context of the Gerischer formalism for electron transfer at the semiconductor/electrolyte junctions

    Artificially steering electrocatalytic oxygen evolution reaction mechanism by regulating oxygen defect contents in perovskites.

    Get PDF
    The regulation of mechanism on the electrocatalysis process with multiple reaction pathways is more efficient and essential than conventional material engineering for the enhancement of catalyst performance. Here, by using oxygen evolution reaction (OER) as a model, which has an adsorbate evolution mechanism (AEM) and a lattice oxygen oxidation mechanism (LOM), we demonstrate a general strategy for steering the two mechanisms on various LaxSr1-xCoO3-δ. By delicately controlling the oxygen defect contents, the dominant OER mechanism on LaxSr1-xCoO3-δ can be arbitrarily transformed between AEM-LOM-AEM accompanied by a volcano-type activity variation trend. Experimental and computational evidence explicitly reveal that the phenomenon is due to the fact that the increased oxygen defects alter the lattice oxygen activity with a volcano-type trend and preserve the Co0 state for preferably OER. Therefore, we achieve the co-optimization between the activity and stability of catalysts by altering the mechanism rather than a specific design of catalysts.Min Lu, Yao Zheng, Yang Hu, Bolong Huang, Deguang Ji, Mingzi Sun, Jianyi Li, Yong Peng, Rui Si, Pinxian Xi, Chun-Hua Ya

    4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides

    No full text
    202308 bckwAccepted ManuscriptSelf-fundedPublishe
    corecore