418 research outputs found

    The future of computing beyond Moore's Law.

    Get PDF
    Moore's Law is a techno-economic model that has enabled the information technology industry to double the performance and functionality of digital electronics roughly every 2 years within a fixed cost, power and area. Advances in silicon lithography have enabled this exponential miniaturization of electronics, but, as transistors reach atomic scale and fabrication costs continue to rise, the classical technological driver that has underpinned Moore's Law for 50 years is failing and is anticipated to flatten by 2025. This article provides an updated view of what a post-exascale system will look like and the challenges ahead, based on our most recent understanding of technology roadmaps. It also discusses the tapering of historical improvements, and how it affects options available to continue scaling of successors to the first exascale machine. Lastly, this article covers the many different opportunities and strategies available to continue computing performance improvements in the absence of historical technology drivers. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'

    tieval: An Evaluation Framework for Temporal Information Extraction Systems

    Full text link
    Temporal information extraction (TIE) has attracted a great deal of interest over the last two decades, leading to the development of a significant number of datasets. Despite its benefits, having access to a large volume of corpora makes it difficult when it comes to benchmark TIE systems. On the one hand, different datasets have different annotation schemes, thus hindering the comparison between competitors across different corpora. On the other hand, the fact that each corpus is commonly disseminated in a different format requires a considerable engineering effort for a researcher/practitioner to develop parsers for all of them. This constraint forces researchers to select a limited amount of datasets to evaluate their systems which consequently limits the comparability of the systems. Yet another obstacle that hinders the comparability of the TIE systems is the evaluation metric employed. While most research works adopt traditional metrics such as precision, recall, and F1F_1, a few others prefer temporal awareness -- a metric tailored to be more comprehensive on the evaluation of temporal systems. Although the reason for the absence of temporal awareness in the evaluation of most systems is not clear, one of the factors that certainly weights this decision is the necessity to implement the temporal closure algorithm in order to compute temporal awareness, which is not straightforward to implement neither is currently easily available. All in all, these problems have limited the fair comparison between approaches and consequently, the development of temporal extraction systems. To mitigate these problems, we have developed tieval, a Python library that provides a concise interface for importing different corpora and facilitates system evaluation. In this paper, we present the first public release of tieval and highlight its most relevant features.Comment: 10 page

    Loom: Exploiting Weight and Activation Precisions to Accelerate Convolutional Neural Networks

    Full text link
    Loom (LM), a hardware inference accelerator for Convolutional Neural Networks (CNNs) is presented. In LM every bit of data precision that can be saved translates to proportional performance gains. Specifically, for convolutional layers LM's execution time scales inversely proportionally with the precisions of both weights and activations. For fully-connected layers LM's performance scales inversely proportionally with the precision of the weights. LM targets area- and bandwidth-constrained System-on-a-Chip designs such as those found on mobile devices that cannot afford the multi-megabyte buffers that would be needed to store each layer on-chip. Accordingly, given a data bandwidth budget, LM boosts energy efficiency and performance over an equivalent bit-parallel accelerator. For both weights and activations LM can exploit profile-derived perlayer precisions. However, at runtime LM further trims activation precisions at a much smaller than a layer granularity. Moreover, it can naturally exploit weight precision variability at a smaller granularity than a layer. On average, across several image classification CNNs and for a configuration that can perform the equivalent of 128 16b x 16b multiply-accumulate operations per cycle LM outperforms a state-of-the-art bit-parallel accelerator [1] by 4.38x without any loss in accuracy while being 3.54x more energy efficient. LM can trade-off accuracy for additional improvements in execution performance and energy efficiency and compares favorably to an accelerator that targeted only activation precisions. We also study 2- and 4-bit LM variants and find the the 2-bit per cycle variant is the most energy efficient

    Synchronous OEIC integrating receiver for optically reconfigurable gate arrays

    Get PDF
    A monolithically integrated optoelectronic receiver with a low-capacitance on-chip pin photodiode is presented. The receiver is fabricated in a 0.35µm opto-CMOS process fed at 3.3V and due to the highly effective integrated pin photodiode it operates at µW. A regenerative latch acting as a sense amplifier leads in addition to a low electrical power consumption. At 400 Mbit/s, sensitivities of -26.0dBm and -25.5dBm are achieved, respectively, for ¿ = 635nm and ¿ = 675nm (BER =10-9) with an energy efficiency of 2 pJ/bit

    Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices

    Full text link
    A recent trend in DNN development is to extend the reach of deep learning applications to platforms that are more resource and energy constrained, e.g., mobile devices. These endeavors aim to reduce the DNN model size and improve the hardware processing efficiency, and have resulted in DNNs that are much more compact in their structures and/or have high data sparsity. These compact or sparse models are different from the traditional large ones in that there is much more variation in their layer shapes and sizes, and often require specialized hardware to exploit sparsity for performance improvement. Thus, many DNN accelerators designed for large DNNs do not perform well on these models. In this work, we present Eyeriss v2, a DNN accelerator architecture designed for running compact and sparse DNNs. To deal with the widely varying layer shapes and sizes, it introduces a highly flexible on-chip network, called hierarchical mesh, that can adapt to the different amounts of data reuse and bandwidth requirements of different data types, which improves the utilization of the computation resources. Furthermore, Eyeriss v2 can process sparse data directly in the compressed domain for both weights and activations, and therefore is able to improve both processing speed and energy efficiency with sparse models. Overall, with sparse MobileNet, Eyeriss v2 in a 65nm CMOS process achieves a throughput of 1470.6 inferences/sec and 2560.3 inferences/J at a batch size of 1, which is 12.6x faster and 2.5x more energy efficient than the original Eyeriss running MobileNet. We also present an analysis methodology called Eyexam that provides a systematic way of understanding the performance limits for DNN processors as a function of specific characteristics of the DNN model and accelerator design; it applies these characteristics as sequential steps to increasingly tighten the bound on the performance limits.Comment: accepted for publication in IEEE Journal on Emerging and Selected Topics in Circuits and Systems. This extended version on arXiv also includes Eyexam in the appendi

    C3D: Mitigating the NUMA Bottleneck via Coherent DRAM Caches

    Get PDF

    Manticore: Hardware-Accelerated RTL Simulation with Static Bulk-Synchronous Parallelism

    Full text link
    The demise of Moore's Law and Dennard Scaling has revived interest in specialized computer architectures and accelerators. Verification and testing of this hardware heavily uses cycle-accurate simulation of register-transfer-level (RTL) designs. The best software RTL simulators can simulate designs at 1--1000~kHz, i.e., more than three orders of magnitude slower than hardware. Faster simulation can increase productivity by speeding design iterations and permitting more exhaustive exploration. One possibility is to use parallelism as RTL exposes considerable fine-grain concurrency. However, state-of-the-art RTL simulators generally perform best when single-threaded since modern processors cannot effectively exploit fine-grain parallelism. This work presents Manticore: a parallel computer designed to accelerate RTL simulation. Manticore uses a static bulk-synchronous parallel (BSP) execution model to eliminate runtime synchronization barriers among many simple processors. Manticore relies entirely on its compiler to schedule resources and communication. Because RTL code is practically free of long divergent execution paths, static scheduling is feasible. Communication and synchronization no longer incur runtime overhead, enabling efficient fine-grain parallelism. Moreover, static scheduling dramatically simplifies the physical implementation, significantly increasing the potential parallelism on a chip. Our 225-core FPGA prototype running at 475 MHz outperforms a state-of-the-art RTL simulator on an Intel Xeon processor running at ≈\approx 3.3 GHz by up to 27.9×\times (geomean 5.3×\times) in nine Verilog benchmarks

    SABRes: Atomic Object Reads for In-Memory Rack-Scale Computing

    Get PDF
    Modern in-memory services rely on large distributed object stores to achieve the high scalability essential to service thousands of requests concurrently. The independent and unpredictable nature of incoming requests results in random accesses to the object store, triggering frequent remote memory accesses. State-of-the-art distributed memory frameworks leverage the one-sided operations offered by RDMA technology to mitigate the traditionally high cost of remote memory access. Unfortunately, the limited semantics of RDMA one-sided operations bound remote memory access atomicity to a single cache block; therefore, atomic remote object access relies on software mechanisms. Emerging highly integrated rack-scale systems that reduce the latency of one-sided operations to a small multiple of DRAM latency expose the overhead of these software mechanisms as a major latency contributor. This technology-triggered paradigm shift calls for new one-sided operations with stronger semantics. We take a step in that direction by proposing SABRes, a new one-sided operation that provides atomic remote object reads in hardware. We then present LightSABRes, a lightweight hardware accelerator for SABRes that removes all atomicity-associated software overheads. Compared to a state-of-the-art software atomicity mechanism, LightSABRes improve the throughput of a microbenchmark atomically accessing 128B-8KB objects from remote memory by 15-97%, and the throughput of a modern in-memory distributed object store by 30-60%

    FPSA: A Full System Stack Solution for Reconfigurable ReRAM-based NN Accelerator Architecture

    Full text link
    Neural Network (NN) accelerators with emerging ReRAM (resistive random access memory) technologies have been investigated as one of the promising solutions to address the \textit{memory wall} challenge, due to the unique capability of \textit{processing-in-memory} within ReRAM-crossbar-based processing elements (PEs). However, the high efficiency and high density advantages of ReRAM have not been fully utilized due to the huge communication demands among PEs and the overhead of peripheral circuits. In this paper, we propose a full system stack solution, composed of a reconfigurable architecture design, Field Programmable Synapse Array (FPSA) and its software system including neural synthesizer, temporal-to-spatial mapper, and placement & routing. We highly leverage the software system to make the hardware design compact and efficient. To satisfy the high-performance communication demand, we optimize it with a reconfigurable routing architecture and the placement & routing tool. To improve the computational density, we greatly simplify the PE circuit with the spiking schema and then adopt neural synthesizer to enable the high density computation-resources to support different kinds of NN operations. In addition, we provide spiking memory blocks (SMBs) and configurable logic blocks (CLBs) in hardware and leverage the temporal-to-spatial mapper to utilize them to balance the storage and computation requirements of NN. Owing to the end-to-end software system, we can efficiently deploy existing deep neural networks to FPSA. Evaluations show that, compared to one of state-of-the-art ReRAM-based NN accelerators, PRIME, the computational density of FPSA improves by 31x; for representative NNs, its inference performance can achieve up to 1000x speedup.Comment: Accepted by ASPLOS 201
    • …
    corecore