904 research outputs found

    Exponential Separation of Quantum Communication and Classical Information

    Full text link
    We exhibit a Boolean function for which the quantum communication complexity is exponentially larger than the classical information complexity. An exponential separation in the other direction was already known from the work of Kerenidis et. al. [SICOMP 44, pp. 1550-1572], hence our work implies that these two complexity measures are incomparable. As classical information complexity is an upper bound on quantum information complexity, which in turn is equal to amortized quantum communication complexity, our work implies that a tight direct sum result for distributional quantum communication complexity cannot hold. The function we use to present such a separation is the Symmetric k-ary Pointer Jumping function introduced by Rao and Sinha [ECCC TR15-057], whose classical communication complexity is exponentially larger than its classical information complexity. In this paper, we show that the quantum communication complexity of this function is polynomially equivalent to its classical communication complexity. The high-level idea behind our proof is arguably the simplest so far for such an exponential separation between information and communication, driven by a sequence of round-elimination arguments, allowing us to simplify further the approach of Rao and Sinha. As another application of the techniques that we develop, we give a simple proof for an optimal trade-off between Alice's and Bob's communication while computing the related Greater-Than function on n bits: say Bob communicates at most b bits, then Alice must send n/exp(O(b)) bits to Bob. This holds even when allowing pre-shared entanglement. We also present a classical protocol achieving this bound.Comment: v1, 36 pages, 3 figure

    An Improved Private Mechanism for Small Databases

    Full text link
    We study the problem of answering a workload of linear queries Q\mathcal{Q}, on a database of size at most n=o(Q)n = o(|\mathcal{Q}|) drawn from a universe U\mathcal{U} under the constraint of (approximate) differential privacy. Nikolov, Talwar, and Zhang~\cite{NTZ} proposed an efficient mechanism that, for any given Q\mathcal{Q} and nn, answers the queries with average error that is at most a factor polynomial in logQ\log |\mathcal{Q}| and logU\log |\mathcal{U}| worse than the best possible. Here we improve on this guarantee and give a mechanism whose competitiveness ratio is at most polynomial in logn\log n and logU\log |\mathcal{U}|, and has no dependence on Q|\mathcal{Q}|. Our mechanism is based on the projection mechanism of Nikolov, Talwar, and Zhang, but in place of an ad-hoc noise distribution, we use a distribution which is in a sense optimal for the projection mechanism, and analyze it using convex duality and the restricted invertibility principle.Comment: To appear in ICALP 2015, Track

    Optimal Single-Choice Prophet Inequalities from Samples

    Get PDF
    We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of 1/21/2 can be achieved with a single sample from each distribution. When the distributions are identical, we show that for any constant ε>0\varepsilon > 0, O(n)O(n) samples from the distribution suffice to achieve the optimal competitive ratio (0.745\approx 0.745) within (1+ε)(1+\varepsilon), resolving an open problem of Correa, D\"utting, Fischer, and Schewior.Comment: Appears in Innovations in Theoretical Computer Science (ITCS) 202
    corecore