1,455 research outputs found

    Semantic Sentiment Analysis of Twitter Data

    Full text link
    Internet and the proliferation of smart mobile devices have changed the way information is created, shared, and spreads, e.g., microblogs such as Twitter, weblogs such as LiveJournal, social networks such as Facebook, and instant messengers such as Skype and WhatsApp are now commonly used to share thoughts and opinions about anything in the surrounding world. This has resulted in the proliferation of social media content, thus creating new opportunities to study public opinion at a scale that was never possible before. Naturally, this abundance of data has quickly attracted business and research interest from various fields including marketing, political science, and social studies, among many others, which are interested in questions like these: Do people like the new Apple Watch? Do Americans support ObamaCare? How do Scottish feel about the Brexit? Answering these questions requires studying the sentiment of opinions people express in social media, which has given rise to the fast growth of the field of sentiment analysis in social media, with Twitter being especially popular for research due to its scale, representativeness, variety of topics discussed, as well as ease of public access to its messages. Here we present an overview of work on sentiment analysis on Twitter.Comment: Microblog sentiment analysis; Twitter opinion mining; In the Encyclopedia on Social Network Analysis and Mining (ESNAM), Second edition. 201

    Exploring Image Virality in Google Plus

    Full text link
    Reactions to posts in an online social network show different dynamics depending on several textual features of the corresponding content. Do similar dynamics exist when images are posted? Exploiting a novel dataset of posts, gathered from the most popular Google+ users, we try to give an answer to such a question. We describe several virality phenomena that emerge when taking into account visual characteristics of images (such as orientation, mean saturation, etc.). We also provide hypotheses and potential explanations for the dynamics behind them, and include cases for which common-sense expectations do not hold true in our experiments.Comment: 8 pages, 8 figures. IEEE/ASE SocialCom 201

    Mining the Demographics of Political Sentiment from Twitter Using Learning from Label Proportions

    Full text link
    Opinion mining and demographic attribute inference have many applications in social science. In this paper, we propose models to infer daily joint probabilities of multiple latent attributes from Twitter data, such as political sentiment and demographic attributes. Since it is costly and time-consuming to annotate data for traditional supervised classification, we instead propose scalable Learning from Label Proportions (LLP) models for demographic and opinion inference using U.S. Census, national and state political polls, and Cook partisan voting index as population level data. In LLP classification settings, the training data is divided into a set of unlabeled bags, where only the label distribution in of each bag is known, removing the requirement of instance-level annotations. Our proposed LLP model, Weighted Label Regularization (WLR), provides a scalable generalization of prior work on label regularization to support weights for samples inside bags, which is applicable in this setting where bags are arranged hierarchically (e.g., county-level bags are nested inside of state-level bags). We apply our model to Twitter data collected in the year leading up to the 2016 U.S. presidential election, producing estimates of the relationships among political sentiment and demographics over time and place. We find that our approach closely tracks traditional polling data stratified by demographic category, resulting in error reductions of 28-44% over baseline approaches. We also provide descriptive evaluations showing how the model may be used to estimate interactions among many variables and to identify linguistic temporal variation, capabilities which are typically not feasible using traditional polling methods

    Demographic Inference and Representative Population Estimates from Multilingual Social Media Data

    Get PDF
    Social media provide access to behavioural data at an unprecedented scale and granularity. However, using these data to understand phenomena in a broader population is difficult due to their non-representativeness and the bias of statistical inference tools towards dominant languages and groups. While demographic attribute inference could be used to mitigate such bias, current techniques are almost entirely monolingual and fail to work in a global environment. We address these challenges by combining multilingual demographic inference with post-stratification to create a more representative population sample. To learn demographic attributes, we create a new multimodal deep neural architecture for joint classification of age, gender, and organization-status of social media users that operates in 32 languages. This method substantially outperforms current state of the art while also reducing algorithmic bias. To correct for sampling biases, we propose fully interpretable multilevel regression methods that estimate inclusion probabilities from inferred joint population counts and ground-truth population counts. In a large experiment over multilingual heterogeneous European regions, we show that our demographic inference and bias correction together allow for more accurate estimates of populations and make a significant step towards representative social sensing in downstream applications with multilingual social media.Comment: 12 pages, 10 figures, Proceedings of the 2019 World Wide Web Conference (WWW '19
    • …
    corecore