218 research outputs found

    Ground Truth for Layout Analysis Performance Evaluation

    No full text
    Over the past two decades a significant number of layout analysis (page segmentation and region classification) approaches have been proposed in the literature. Each approach has been devised for and/or evaluated using (usually small) application-specific datasets. While the need for objective performance evaluation of layout analysis algorithms is evident, there does not exist a suitable dataset with ground truth that reflects the realities of everyday documents (widely varying layouts, complex entities, colour, noise etc.). The most significant impediment is the creation of accurate and flexible (in representation) ground truth, a task that is costly and must be carefully designed. This paper discusses the issues related to the design, representation and creation of ground truth in the context of a realistic dataset developed by the authors. The effectiveness of the ground truth discussed in this paper has been successfully shown in its use for two international page segmentation competitions (ICDAR2003 and ICDAR2005)

    Estimation of the Handwritten Text Skew Based on Binary Moments

    Get PDF
    Binary moments represent one of the methods for the text skew estimation in binary images. It has been used widely for the skew identification of the printed text. However, the handwritten text consists of text objects, which are characterized with different skews. Hence, the method should be adapted for the handwritten text. This is achieved with the image splitting into separate text objects made by the bounding boxes. Obtained text objects represent the isolated binary objects. The application of the moment-based method to each binary object evaluates their local text skews. Due to the accuracy, estimated skew data can be used as an input to the algorithms for the text line segmentation

    A limited-size ensemble of homogeneous CNN/LSTMs for high-performance word classification

    Get PDF
    The strength of long short-term memory neural networks (LSTMs) that have been applied is more located in handling sequences of variable length than in handling geometric variability of the image patterns. In this paper, an end-to-end convolutional LSTM neural network is used to handle both geometric variation and sequence variability. The best results for LSTMs are often based on large-scale training of an ensemble of network instances. We show that high performances can be reached on a common benchmark set by using proper data augmentation for just five such networks using a proper coding scheme and a proper voting scheme. The networks have similar architectures (convolutional neural network (CNN): five layers, bidirectional LSTM (BiLSTM): three layers followed by a connectionist temporal classification (CTC) processing step). The approach assumes differently scaled input images and different feature map sizes. Three datasets are used: the standard benchmark RIMES dataset (French); a historical handwritten dataset KdK (Dutch); the standard benchmark George Washington (GW) dataset (English). Final performance obtained for the word-recognition test of RIMES was 96.6%, a clear improvement over other state-of-the-art approaches which did not use a pre-trained network. On the KdK and GW datasets, our approach also shows good results. The proposed approach is deployed in the Monk search engine for historical-handwriting collections

    Automatic Signature Verification: The State of the Art

    Full text link
    • …
    corecore