1 research outputs found

    3T-TFET bitcell based TFET-CMOS hybrid SRAM design for Ultra-Low Power applications

    No full text
    International audienceThis paper presents a TFET/CMOS hybrid SRAM architecture designed to address the requirements for ULP (Ultra-Low Power) applications, like IoT (Internet of Things). A novel 3-Transistor TFET SRAM cell is used for array while CMOS for periphery. The simulation extractions for power and speed are done including wiring and device parasitic capacitance from 4Kb SRAM designed in 28nm FDSOI CMOS process using MOSFETs & Tunnel FETs (TFETs). The proposed 3T-TFET SRAM cell supports aggressive voltage scaling without impacting data stability and allows application of performance boosting techniques without impacting cell leakage. A 0.35 fA/bit memory array leakage current was achieved showing a 14x to 104x improvement compared with state-of-the-art TFET and CMOS SRAM bitcells. Minimum read and write access pulse is evaluated at 1.27ns at sub-1V supply voltage
    corecore