785 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Automatic analysis of medical images for change detection in prostate cancer

    Get PDF
    Prostate cancer is the most common cancer and second most common cause of cancer death in men in the UK. However, the patient risk from the cancer can vary considerably, and the widespread use of prostate-specific antigen (PSA) screening has led to over-diagnosis and over-treatment of low-grade tumours. It is therefore important to be able to differentiate high-grade prostate cancer from the slowly- growing, low-grade cancer. Many of these men with low-grade cancer are placed on active surveillance (AS), which involves constant monitoring and intervention for risk reclassification, relying increasingly on magnetic resonance imaging (MRI) to detect disease progression, in addition to TRUS-guided biopsies which are the routine clinical standard method to use. This results in a need for new tools to process these images. For this purpose, it is important to have a good TRUS-MR registration so corresponding anatomy can be located accurately between the two. Automatic segmentation of the prostate gland on both modalities reduces some of the challenges of the registration, such as patient motion, tissue deformation, and the time of the procedure. This thesis focuses on the use of deep learning methods, specifically convolutional neural networks (CNNs), for prostate cancer management. Chapters 4 and 5 investigated the use of CNNs for both TRUS and MRI prostate gland segmentation, and reported high segmentation accuracies for both, Dice Score Coefficients (DSC) of 0.89 for TRUS segmentations and DSCs between 0.84-0.89 for MRI prostate gland segmentation using a range of networks. Chapter 5 also investigated the impact of these segmentation scores on more clinically relevant measures, such as MRI-TRUS registration errors and volume measures, showing that a statistically significant difference in DSCs did not lead to a statistically significant difference in the clinical measures using these segmentations. The potential of these algorithms in commercial and clinical systems are summarised and the use of the MRI prostate gland segmentation in the application of radiological prostate cancer progression prediction for AS patients are investigated and discussed in Chapter 8, which shows statistically significant improvements in accuracy when using spatial priors in the form of prostate segmentations (0.63 ± 0.16 vs. 0.82 ± 0.18 when comparing whole prostate MRI vs. only prostate gland region, respectively)

    NiftyNet: a deep-learning platform for medical imaging

    Get PDF
    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this application requires substantial implementation effort. Thus, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. NiftyNet provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on TensorFlow and supports TensorBoard visualization of 2D and 3D images and computational graphs by default. We present 3 illustrative medical image analysis applications built using NiftyNet: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. NiftyNet enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.Comment: Wenqi Li and Eli Gibson contributed equally to this work. M. Jorge Cardoso and Tom Vercauteren contributed equally to this work. 26 pages, 6 figures; Update includes additional applications, updated author list and formatting for journal submissio

    Prostate Cancer Diagnosis using Magnetic Resonance Imaging - a Machine Learning Approach

    Get PDF
    • …
    corecore