8,804 research outputs found

    PERF: Panoramic Neural Radiance Field from a Single Panorama

    Full text link
    Neural Radiance Field (NeRF) has achieved substantial progress in novel view synthesis given multi-view images. Recently, some works have attempted to train a NeRF from a single image with 3D priors. They mainly focus on a limited field of view with a few occlusions, which greatly limits their scalability to real-world 360-degree panoramic scenarios with large-size occlusions. In this paper, we present PERF, a 360-degree novel view synthesis framework that trains a panoramic neural radiance field from a single panorama. Notably, PERF allows 3D roaming in a complex scene without expensive and tedious image collection. To achieve this goal, we propose a novel collaborative RGBD inpainting method and a progressive inpainting-and-erasing method to lift up a 360-degree 2D scene to a 3D scene. Specifically, we first predict a panoramic depth map as initialization given a single panorama and reconstruct visible 3D regions with volume rendering. Then we introduce a collaborative RGBD inpainting approach into a NeRF for completing RGB images and depth maps from random views, which is derived from an RGB Stable Diffusion model and a monocular depth estimator. Finally, we introduce an inpainting-and-erasing strategy to avoid inconsistent geometry between a newly-sampled view and reference views. The two components are integrated into the learning of NeRFs in a unified optimization framework and achieve promising results. Extensive experiments on Replica and a new dataset PERF-in-the-wild demonstrate the superiority of our PERF over state-of-the-art methods. Our PERF can be widely used for real-world applications, such as panorama-to-3D, text-to-3D, and 3D scene stylization applications. Project page and code are available at https://perf-project.github.io/ and https://github.com/perf-project/PeRF.Comment: Project Page: https://perf-project.github.io/ , Code: https://github.com/perf-project/PeR

    Deeply Learned Priors for Geometric Reconstruction

    Get PDF
    This thesis comprises of a body of work that investigates the use of deeply learned priors for dense geometric reconstruction of scenes. A typical image captured by a 2D camera sensor is a lossy two-dimensional (2D) projection of our three-dimensional (3D) world. Geometric reconstruction approaches usually recreate the lost structural information by taking in multiple images observing a scene from different views and solving a problem known as Structure from Motion (SfM) or Simultaneous Localization and Mapping (SLAM). Remarkably, by establishing correspondences across images and use of geometric models, these methods (under reasonable conditions) can reconstruct a scene's 3D structure as well as precisely localise the observed views relative to the scene. The success of dense every-pixel multi-view reconstruction is however limited by matching ambiguities that commonly arise due to uniform texture, occlusion, and appearance distortion, among several other factors. The standard approach to deal with matching ambiguities is to handcraft priors based on assumptions like piecewise smoothness or planarity in the 3D map, in order to "fill in" map regions supported by little or ambiguous matching evidence. In this thesis we propose learned priors that in comparison more closely model the true structure of the scene and are based on geometric information predicted from the images. The motivation stems from recent advancements in deep learning algorithms and availability of massive datasets, that have allowed Convolutional Neural Networks (CNNs) to predict geometric properties of a scene such as point-wise surface normals and depths, from just a single image, more reliably than what was possible using previous machine learning-based or hand-crafted methods. In particular, we first explore how single image-based surface normals from a CNN trained on massive amount of indoor data can benefit the accuracy of dense reconstruction given input images from a moving monocular camera. Here we propose a novel surface normal based inverse depth regularizer and compare its performance against the inverse depth smoothness prior that is typically used to regularize regions in the reconstruction that are textureless. We also propose the first real-time CNN-based framework for live dense monocular reconstruction using our learned normal prior. Next, we look at how we can use deep learning to learn features in order to improve the pixel matching process itself, which is at the heart of multi-view geometric reconstruction. We propose a self-supervised feature learning scheme using RGB-D data from a 3D sensor (that does not require any manual labelling) and a multi-scale CNN architecture for feature extraction that is fast and eficient to run inside our proposed real-time monocular reconstruction framework. We extensively analyze the combined benefits of using learned normals and deep features that are good-for-matching in the context of dense reconstruction, both quantitatively and qualitatively on large real world datasets. Lastly, we explore how learned depths, also predicted on a per-pixel basis from a single image using a CNN, can be used to inpaint sparse 3D maps obtained from monocular SLAM or a 3D sensor. We propose a novel model that uses predicted depths and confidences from CNNs as priors to inpaint maps with arbitrary scale and sparsity. We obtain more reliable reconstructions than those of traditional depth inpainting methods such as the cross-bilateral filter that in comparison offer few learnable parameters. Here we advocate the idea of "just-in-time reconstruction" where a higher level of scene understanding reliably inpaints the corresponding portion of a sparse map on-demand and in real-time.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 201

    Multi-View Priors for Learning Detectors from Sparse Viewpoint Data

    Full text link
    While the majority of today's object class models provide only 2D bounding boxes, far richer output hypotheses are desirable including viewpoint, fine-grained category, and 3D geometry estimate. However, models trained to provide richer output require larger amounts of training data, preferably well covering the relevant aspects such as viewpoint and fine-grained categories. In this paper, we address this issue from the perspective of transfer learning, and design an object class model that explicitly leverages correlations between visual features. Specifically, our model represents prior distributions over permissible multi-view detectors in a parametric way -- the priors are learned once from training data of a source object class, and can later be used to facilitate the learning of a detector for a target class. As we show in our experiments, this transfer is not only beneficial for detectors based on basic-level category representations, but also enables the robust learning of detectors that represent classes at finer levels of granularity, where training data is typically even scarcer and more unbalanced. As a result, we report largely improved performance in simultaneous 2D object localization and viewpoint estimation on a recent dataset of challenging street scenes.Comment: 13 pages, 7 figures, 4 tables, International Conference on Learning Representations 201

    Few-Shot Single-View 3-D Object Reconstruction with Compositional Priors

    Full text link
    The impressive performance of deep convolutional neural networks in single-view 3D reconstruction suggests that these models perform non-trivial reasoning about the 3D structure of the output space. However, recent work has challenged this belief, showing that complex encoder-decoder architectures perform similarly to nearest-neighbor baselines or simple linear decoder models that exploit large amounts of per category data in standard benchmarks. On the other hand settings where 3D shape must be inferred for new categories with few examples are more natural and require models that generalize about shapes. In this work we demonstrate experimentally that naive baselines do not apply when the goal is to learn to reconstruct novel objects using very few examples, and that in a \emph{few-shot} learning setting, the network must learn concepts that can be applied to new categories, avoiding rote memorization. To address deficiencies in existing approaches to this problem, we propose three approaches that efficiently integrate a class prior into a 3D reconstruction model, allowing to account for intra-class variability and imposing an implicit compositional structure that the model should learn. Experiments on the popular ShapeNet database demonstrate that our method significantly outperform existing baselines on this task in the few-shot setting

    Learning Shape Priors for Single-View 3D Completion and Reconstruction

    Full text link
    The problem of single-view 3D shape completion or reconstruction is challenging, because among the many possible shapes that explain an observation, most are implausible and do not correspond to natural objects. Recent research in the field has tackled this problem by exploiting the expressiveness of deep convolutional networks. In fact, there is another level of ambiguity that is often overlooked: among plausible shapes, there are still multiple shapes that fit the 2D image equally well; i.e., the ground truth shape is non-deterministic given a single-view input. Existing fully supervised approaches fail to address this issue, and often produce blurry mean shapes with smooth surfaces but no fine details. In this paper, we propose ShapeHD, pushing the limit of single-view shape completion and reconstruction by integrating deep generative models with adversarially learned shape priors. The learned priors serve as a regularizer, penalizing the model only if its output is unrealistic, not if it deviates from the ground truth. Our design thus overcomes both levels of ambiguity aforementioned. Experiments demonstrate that ShapeHD outperforms state of the art by a large margin in both shape completion and shape reconstruction on multiple real datasets.Comment: ECCV 2018. The first two authors contributed equally to this work. Project page: http://shapehd.csail.mit.edu
    • …
    corecore