57,149 research outputs found

    Automatic Object Segmentation from Calibrated Images

    Get PDF
    This paper addresses the problem of automatically obtaining the object/background segmentation of a rigid 3D object observed in a set of images that have been calibrated for camera pose and intrinsics. Such segmentations can be used to obtain a shape representation of a potentially texture-less object by computing a visual hull. We propose an automatic approach where the object to be segmented is identified by the pose of the cameras instead of user input such as 2D bounding rectangles or brush-strokes. The key behind our method is a pairwise MRF framework that combines (a) foreground/background appearance models, (b) epipolar constraints and (c) weak stereo correspondence into a single segmentation cost function that can be efficiently solved by Graph-cuts. The segmentation thus obtained is further improved using silhouette coherency and then used to update the foreground/background appearance models which are fed into the next Graph-cut computation. These two steps are iterated until segmentation convergences. Our method can automatically provide a 3D surface representation even in texture-less scenes where MVS methods might fail. Furthermore, it confers improved performance in images where the object is not readily separable from the background in colour space, an area that previous segmentation approaches have found challenging

    3D Model Assisted Image Segmentation

    Get PDF
    The problem of segmenting a given image into coherent regions is important in Computer Vision and many industrial applications require segmenting a known object into its components. Examples include identifying individual parts of a component for proces

    Template-Cut: A Pattern-Based Segmentation Paradigm

    Get PDF
    We present a scale-invariant, template-based segmentation paradigm that sets up a graph and performs a graph cut to separate an object from the background. Typically graph-based schemes distribute the nodes of the graph uniformly and equidistantly on the image, and use a regularizer to bias the cut towards a particular shape. The strategy of uniform and equidistant nodes does not allow the cut to prefer more complex structures, especially when areas of the object are indistinguishable from the background. We propose a solution by introducing the concept of a "template shape" of the target object in which the nodes are sampled non-uniformly and non-equidistantly on the image. We evaluate it on 2D-images where the object's textures and backgrounds are similar, and large areas of the object have the same gray level appearance as the background. We also evaluate it in 3D on 60 brain tumor datasets for neurosurgical planning purposes.Comment: 8 pages, 6 figures, 3 tables, 6 equations, 51 reference

    3D Segmentation Method for Natural Environments based on a Geometric-Featured Voxel Map

    Get PDF
    This work proposes a new segmentation algorithm for three-dimensional dense point clouds and has been specially designed for natural environments where the ground is unstructured and may include big slopes, non-flat areas and isolated areas. This technique is based on a Geometric-Featured Voxel map (GFV) where the scene is discretized in constant size cubes or voxels which are classified in flat surface, linear or tubular structures and scattered or undefined shapes, usually corresponding to vegetation. Since this is not a point-based technique the computational cost is significantly reduced, hence it may be compatible with Real-Time applications. The ground is extracted in order to obtain more accurate results in the posterior segmentation process. The scene is split into objects and a second segmentation in regions inside each object is performed based on the voxel’s geometric class. The work here evaluates the proposed algorithm in various versions and several voxel sizes and compares the results with other methods from the literature. For the segmentation evaluation the algorithms are tested on several differently challenging hand-labeled data sets using two metrics, one of which is novel.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore