2 research outputs found

    formal modeling for magnetic resonance images tamper mitigation

    Get PDF
    Abstract The picture archiving and communication system is a medical imaging technology used primarily in healthcare organizations to store and digitally transmit electronic images and clinically-relevant reports. As demonstrated, these systems can be exploited by malicious users: in fact, considering that medical images are not digitally encrypted, any medical image modifications would be difficult to detect for a radiologist. To mitigate this aspect, in this paper a formal modelisation for picture archiving and communication system systems is proposed. The main aim is to avoid illegal writing and reading from components that should not do it, by representing the system components in terms of automa

    DIGITAL WATERMARKING OF 3D MEDICAL VISUAL OBJECTS

    Get PDF
    At present, medical equipment provides often 3D models of scanning organs instead of ordinary 2D images. This concept is supported by Digital Imaging and COmmunications in Medicine (DICOM) standard available for telemedicine. This means that the confidential information under transmission ought to be protected by special techniques, particularly digital watermarking scheme instead of textual informative files represented, for example, on CD disks. We propose a multilevel protection, for which a fragile watermark is the first level of protection. The Region Of Interest (ROI) watermark and textual watermarks with information about patient and study (the last ones can be combines as a single textual watermark) form the second level of protection. Encryption of the ROI and textual watermarks using Arnold’s transform is the third level of protection. In the case of 3D models, we find the ROI in each of 2D sliced images, apply the digital wavelet transform or digital shearlet transform (depending on the volume of watermarks) for the ROI and textual watermarks embedding, and embed a fragile watermark using digital Hadamard transform. The main task is to find the relevant regions for embedding. To this and, we develop the original algorithm for selecting relevant regions. The obtained results confirm the robustness of our approach for rotation, scaling, translation, and JPEG attacks
    corecore