64 research outputs found

    Personalized 3D mannequin reconstruction based on 3D scanning

    Get PDF
    Purpose Currently, a common method of reconstructing mannequin is based on the body measurements or body features, which only preserve the body size lacking of the accurate body geometric shape information. However, the same human body measurement does not equal to the same body shape. This may result in an unfit garment for the target human body. The purpose of this paper is to propose a novel scanning-based pipeline to reconstruct the personalized mannequin, which preserves both body size and body shape information. Design/methodology/approach The authors first capture the body of a subject via 3D scanning, and a statistical body model is fit to the scanned data. This results in a skinned articulated model of the subject. The scanned body is then adjusted to be pose-symmetric via linear blending skinning. The mannequin part is then extracted. Finally, a slice-based method is proposed to generate a shape-symmetric 3D mannequin. Findings A personalized 3D mannequin can be reconstructed from the scanned body. Compared to conventional methods, the method can preserve both the size and shape of the original scanned body. The reconstructed mannequin can be imported directly into the apparel CAD software. The proposed method provides a step for digitizing the apparel manufacturing. Originality/value Compared to the conventional methods, the main advantage of the authorsā€™ system is that the authors can preserve both size and geometry of the original scanned body. The main contributions of this paper are as follows: decompose the process of the mannequin reconstruction into pose symmetry and shape symmetry; propose a novel scanning-based pipeline to reconstruct a 3D personalized mannequin; and present a slice-based method for the symmetrization of the 3D mesh. </jats:sec

    Research and Design of Supportive Exoskeletal Aides for the Physically ChallengedAn Initial Investigation Into The Fundamentals And Rudiments Of Building A Full Body ExoskeletonMark

    Get PDF
    The purpose of this study is to provide methodology for designing exoskeletal prostheses targeted to specific pathologies associated with: Cerebral Palsy; Limb Deficiency; Spinal Pathologies; and Functional Limb Pathologies This study will extend to whole body exoskeletal structures. The project will be performed in conjunction with Shrinerā€™s Hospital for Children in Springfield, Massachusetts; M.I.T. Bio-prosthetic Group; and finally, Massachusetts General Hospital Orthopedics Group. Further work will be done designing the necessary components for the project in Solidworks utilizing a 3D mannequin. The parts will then be fabricated using a CNC machine, first making them from foam insulation, then from wood and finally from aluminum

    A mobile visual diary for personal pain management

    Get PDF
    Back-pain is one of the most prolific health problems within the population and costs industry lost revenue due to the amount of days people have to take off in order to recover. In this paper, we have targeted this problem and suggested a mobile app for visually diarizing the pain experience of patients. The Android platform is utilized and its technology stack forms the basis for this 3D centric application. Positive evaluations obtained provide evidence of the promising nature of the approach and indicate several future directions of research within mobile pain management

    Interactive Sketching of Mannequin Poses

    Get PDF
    It can be easy and even fun to sketch humans in different poses. In contrast, creating those same poses on a 3D graphics 'mannequin' is comparatively tedious. Yet 3D body poses are necessary for various downstream applications. We seek to preserve the convenience of 2D sketching while giving users of different skill levels the flexibility to accurately and more quickly pose/refine a 3D mannequin. At the core of the interactive system, we propose a machine-learning model for inferring the 3D pose of a CG mannequin from sketches of humans drawn in a cylinder-person style. Training such a model is challenging because of artist variability, a lack of sketch training data with corresponding ground truth 3D poses, and the high dimensionality of human pose-space. Our unique approach to synthesizing vector graphics training data underpins our integrated ML-and-kinematics system. We validate the system by tightly coupling it with a user interface, and by performing a user study, in addition to quantitative comparisons

    Virtual Garment Creation

    Get PDF

    Topological approaches for 3D object processing and applications

    Get PDF
    The great challenge in 3D object processing is to devise computationally efficient algorithms for recovering 3D models contaminated by noise and preserving their geometrical structure. The first problem addressed in this thesis is object denoising formulated in the discrete variational framework. We introduce a 3D mesh denoising method based on kernel density estimation. The proposed approach is able to reduce the over-smoothing effect and effectively remove undesirable noise while preserving prominent geometric features of a 3D mesh such as sharp features and fine details. The feasibility of the approach is demonstrated through extensive experiments. The rest of the thesis is devoted to a joint exploitation of geometry and topology of 3D objects for as parsimonious as possible representation of models and its subsequent application in object modeling, compression, and hashing problems. We introduce a 3D mesh compression technique using the centroidal mesh neighborhood information. The key idea is to apply eigen-decomposition to the mesh umbrella matrix, and then discard the smallest eigenvalues/eigenvectors in order to reduce the dimensionality of the new spectral basis so that most of the energy is concentrated in the low frequency coefficients. We also present a hashing technique for 3D models using spectral graph theory and entropic spanning trees by partitioning a 3D triangle mesh into an ensemble of submeshes, and then applying eigen-decomposition to the Laplace-Beltrami matrix of each sub-mesh, followed by computing the hash value of each sub-mesh. Moreover, we introduce several statistical distributions to analyze the topological properties of 3D objects. These probabilistic distributions provide useful information about the way 3D mesh models are connected. Illustrating experiments with synthetic and real data are provided to demonstrate the feasibility and the much improved performance of the proposed approaches in 3D object compression, hashing, and modeling

    Analysis of modern computer technologies used for virtual fitting of clothes

    Get PDF
    The aim of the research is to analyze modern services used for online selection of clothes of the desired size, and to determine the effective ways of their implementation. A comparative analysis of functional services on virtual fitting of clothes on the electronic mannequin has been carried out, and the systematization of various methods of realization of virtual fitting of clothes has been performed in order to provide an assessment of quality of the finished products, namely, to predict the size of clothes, to form the recommendations on the feeling of comfort clothes, and to provide the assessment of anthropometric conformity with the accordance of the form of clothes design and the consideration of anthropometric characteristics of the human body. The main components that influence the quality of formation of assessment of anthropometric conformity have been determined
    • ā€¦
    corecore