630,931 research outputs found
An Introduction to 3D User Interface Design
3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article
3DTouch: A wearable 3D input device with an optical sensor and a 9-DOF inertial measurement unit
We present 3DTouch, a novel 3D wearable input device worn on the fingertip
for 3D manipulation tasks. 3DTouch is designed to fill the missing gap of a 3D
input device that is self-contained, mobile, and universally working across
various 3D platforms. This paper presents a low-cost solution to designing and
implementing such a device. Our approach relies on relative positioning
technique using an optical laser sensor and a 9-DOF inertial measurement unit.
3DTouch is self-contained, and designed to universally work on various 3D
platforms. The device employs touch input for the benefits of passive haptic
feedback, and movement stability. On the other hand, with touch interaction,
3DTouch is conceptually less fatiguing to use over many hours than 3D spatial
input devices. We propose a set of 3D interaction techniques including
selection, translation, and rotation using 3DTouch. An evaluation also
demonstrates the device's tracking accuracy of 1.10 mm and 2.33 degrees for
subtle touch interaction in 3D space. Modular solutions like 3DTouch opens up a
whole new design space for interaction techniques to further develop on.Comment: 8 pages, 7 figure
Integrating Multiple 3D Views through Frame-of-reference Interaction
Frame-of-reference interaction consists of a unified set of 3D interaction techniques for exploratory navigation of large virtual spaces in nonimmersive environments. It is based on a conceptual framework that considers navigation from a cognitive perspective, as a way of facilitating changes in user attention from one reference frame to another, rather than from the mechanical perspective of moving a camera between different points of interest. All of our techniques link multiple frames of reference in some meaningful way. Some techniques link multiple windows within a zooming environment while others allow seamless changes of user focus between static objects, moving objects, and groups of moving objects. We present our techniques as they are implemented in GeoZui3D, a geographic visualization system for ocean data
Using Pinch Gloves(TM) for both Natural and Abstract Interaction Techniques in Virtual Environments
Usable three-dimensional (3D) interaction techniques are difficult to design, implement, and evaluate. One reason for this is a poor understanding of the advantages and disadvantages of the wide range of 3D input devices, and of the mapping between input devices and interaction techniques. We present an analysis of Pinch Gloves™ and their use as input devices for virtual environments (VEs). We have developed a number of novel and usable interaction techniques for VEs using the gloves, including a menu system, a technique for text input, and a two-handed navigation technique. User studies have indicated the usability and utility of these techniques
Two-Finger 3D Rotations for Novice Users: Surjective and Integral Interactions
International audienceNow that 3D interaction is available on tablets and smart phones, it becomes critical to provide efficient 3D interaction techniques for novice users. This paper investigates interaction techniques for 3D rotation with two fingers of a single hand, on multitouch mobile devices. We introduce two new rotation techniques that allow integral control of the 3 axes of rotation. These techniques also satisfy a new criterion that we introduce: surjection. We ran a study to compare the new techniques with two widely used rotation techniques from the literature. Results indicate that surjection and integration lead to a performance improvement of a group of participants who had no prior experience in 3D interaction. Qualitative results also indicate participants' preference for the new interaction techniques
Quasi-one-dimensional Bose gases with large scattering length
Bose gases confined in highly-elongated harmonic traps are investigated over
a wide range of interaction strengths using quantum Monte Carlo techniques. We
find that the properties of a Bose gas under tight transverse confinement are
well reproduced by a 1d model Hamiltonian with contact interactions. We point
out the existence of a unitary regime, where the properties of the quasi-1d
Bose gas become independent of the actual value of the 3d scattering length. In
this unitary regime, the energy of the system is well described by a hard rod
equation of state. We investigate the stability of quasi-1d Bose gases with
positive and negative 3d scattering length.Comment: 5 pages, 3 figure
Design and Evaluation of 3D Positioning Techniques for Multi-touch Displays
Multi-touch displays represent a promising technology for the display and manipulation of 3D data. To fully exploit their capabilities, appropriate interaction techniques must be designed. In this paper, we explore the design of free 3D positioning techniques for multi-touch displays to exploit the additional degrees of freedom provided by this technology. We present a first interaction technique to extend the standard four viewports technique found in commercial CAD applications and a second technique designed to allow free 3D positioning with a single view of the scene. The two techniques were then evaluated in a controlled experiment. Results show no statistical difference for the positioning time but a clear preference for the Z-technique
Supporting Focus and Context Awareness in 3D Modelling Tasks Using Multi-Layered Displays
Most 3D modelling software have been developed for conventional 2D displays, and as such, lack support for true depth perception. This contributes to making polygonal 3D modelling tasks challenging, particularly when models are complex and consist of a large number of overlapping components (e.g. vertices, edges) and objects (i.e. parts). Research has shown that users of 3D modelling software often encounter a range of difficulties, which collectively can be defined as focus and context awareness problems. These include maintaining position and orientation awarenesses, as well as recognizing distance between individual components and objects in 3D spaces. In this paper, we present five visualization and interaction techniques we have developed for multi-layered displays, to better support focus and context awareness in 3D modelling tasks. The results of a user study we conducted shows that three of these five techniques improve users' 3D modelling task performance
Wang-Landau study of the 3D Ising model with bond disorder
We implement a two-stage approach of the Wang-Landau algorithm to investigate
the critical properties of the 3D Ising model with quenched bond randomness. In
particular, we consider the case where disorder couples to the nearest-neighbor
ferromagnetic interaction, in terms of a bimodal distribution of strong versus
weak bonds. Our simulations are carried out for large ensembles of disorder
realizations and lattices with linear sizes in the range . We apply
well-established finite-size scaling techniques and concepts from the scaling
theory of disordered systems to describe the nature of the phase transition of
the disordered model, departing gradually from the fixed point of the pure
system. Our analysis (based on the determination of the critical exponents)
shows that the 3D random-bond Ising model belongs to the same universality
class with the site- and bond-dilution models, providing a single universality
class for the 3D Ising model with these three types of quenched uncorrelated
disorder.Comment: 7 pages, 7 figures, to be published in Eur. Phys. J.
Exploring the Potential of 3D Visualization Techniques for Usage in Collaborative Design
Best practice for collaborative design demands good interaction between its collaborators. The capacity to share common knowledge about design models at hand is a basic requirement. With current advancing technologies gathering collective knowledge is more straightforward, as the dialog between experts can be supported better. The potential for 3D visualization techniques to become the right support tool for collaborative design is explored. Special attention is put on the possible usage for remote collaboration. The opportunities for current state-of-the-art visualization techniques from stereoscopic vision to holographic displays are researched. A classification of the various systems is explored with respect to their tangible usage for augmented reality. Appropriate interaction methods can be selected based on the usage scenario
- …
