1,356 research outputs found

    A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms

    Full text link
    In this paper a review is presented of the research on eye gaze estimation techniques and applications, that has progressed in diverse ways over the past two decades. Several generic eye gaze use-cases are identified: desktop, TV, head-mounted, automotive and handheld devices. Analysis of the literature leads to the identification of several platform specific factors that influence gaze tracking accuracy. A key outcome from this review is the realization of a need to develop standardized methodologies for performance evaluation of gaze tracking systems and achieve consistency in their specification and comparative evaluation. To address this need, the concept of a methodological framework for practical evaluation of different gaze tracking systems is proposed.Comment: 25 pages, 13 figures, Accepted for publication in IEEE Access in July 201

    A Review of Driver Gaze Estimation and Application in Gaze Behavior Understanding

    Full text link
    Driver gaze plays an important role in different gaze-based applications such as driver attentiveness detection, visual distraction detection, gaze behavior understanding, and building driver assistance system. The main objective of this study is to perform a comprehensive summary of driver gaze fundamentals, methods to estimate driver gaze, and it's applications in real world driving scenarios. We first discuss the fundamentals related to driver gaze, involving head-mounted and remote setup based gaze estimation and the terminologies used for each of these data collection methods. Next, we list out the existing benchmark driver gaze datasets, highlighting the collection methodology and the equipment used for such data collection. This is followed by a discussion of the algorithms used for driver gaze estimation, which primarily involves traditional machine learning and deep learning based techniques. The estimated driver gaze is then used for understanding gaze behavior while maneuvering through intersections, on-ramps, off-ramps, lane changing, and determining the effect of roadside advertising structures. Finally, we have discussed the limitations in the existing literature, challenges, and the future scope in driver gaze estimation and gaze-based applications

    Pupil Position by an Improved Technique of YOLO Network for Eye Tracking Application

    Get PDF
    This Eye gaze following is the real-time collection of information about a person's eye movements and the direction of their look. Eye gaze trackers are devices that measure the locations of the pupils to detect and track changes in the direction of the user's gaze. There are numerous applications for analyzing eye movements, from psychological studies to human-computer interaction-based systems and interactive robotics controls. Real-time eye gaze monitoring requires an accurate and reliable iris center localization technique. Deep learning technology is used to construct a pupil tracking approach for wearable eye trackers in this study. This pupil tracking method uses deep-learning You Only Look Once (YOLO) model to accurately estimate and anticipate the pupil's central location under conditions of bright, natural light (visible to the naked eye). Testing pupil tracking performance with the upgraded YOLOv7 results in an accuracy rate of 98.50% and a precision rate close to 96.34% using PyTorch

    Enabling Depth-driven Visual Attention on the iCub Humanoid Robot: Instructions for Use and New Perspectives

    Get PDF
    The importance of depth perception in the interactions that humans have within their nearby space is a well established fact. Consequently, it is also well known that the possibility of exploiting good stereo information would ease and, in many cases, enable, a large variety of attentional and interactive behaviors on humanoid robotic platforms. However, the difficulty of computing real-time and robust binocular disparity maps from moving stereo cameras often prevents from relying on this kind of cue to visually guide robots' attention and actions in real-world scenarios. The contribution of this paper is two-fold: first, we show that the Efficient Large-scale Stereo Matching algorithm (ELAS) by A. Geiger et al. 2010 for computation of the disparity map is well suited to be used on a humanoid robotic platform as the iCub robot; second, we show how, provided with a fast and reliable stereo system, implementing relatively challenging visual behaviors in natural settings can require much less effort. As a case of study we consider the common situation where the robot is asked to focus the attention on one object close in the scene, showing how a simple but effective disparity-based segmentation solves the problem in this case. Indeed this example paves the way to a variety of other similar applications
    • …
    corecore