5 research outputs found

    The 3D widgets for exploratory scientific visualization

    Get PDF
    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene

    Designing Explicit Numeric Input Interfaces for Immersive Virtual Environments

    Get PDF
    User interfaces involving explicit control of numeric values in immersive virtual environments have not been well studied. In the context of designing three-dimensional interaction techniques for the creation of multiple objects, called cloning, we have developed and tested a dynamic slider interface (D-Slider) and a virtual numeric keypad (VKey). Our cloning interface requires precise number input because it allows users to place objects at any location in the environment with a precision of 1/10 unit. The design of the interface focuses on feedback, constraints, and expressiveness. Comparative usability studies have shown that the newly designed user interfaces were easy to use, effective, and had a good quality of interaction. We describe a working prototype of our cloning interface, the iterative design process for D-Slider and V-Key, and lessons learned. Our interfaces can be re-used for any virtual environment interaction tasks requiring explicit numeric input

    Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets

    Get PDF
    Journal ArticleMost direct volume renderings produced today employ onedimensional transfer functions, which assign color and opacity to the volume based solely on the single scalar quantity which comprises the dataset. Though they have not received widespread attention, multi-dimensional transfer functions are a very effective way to extract specific material boundaries and convey subtle surface properties. However, identifying good transfer functions is difficult enough in one dimension, let alone two or three dimensions. This paper demonstrates an important class of three-dimensional transfer functions for scalar data (based on data value, gradient magnitude, and a second directional derivative), and describes a set of direct manipulation widgets which make specifying such transfer functions intuitive and convenient. We also describe how to use modern graphics hardware to interactively render with multi-dimensional transfer functions. The transfer functions, widgets, and hardware combine to form a powerful system for interactive volume exploration

    Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets

    Get PDF
    Journal ArticleMost direct volume renderings produced today employ one-dimensional transfer functions, which assign color and opacity to the volume based solely on the single scalar quantity which comprises the dataset. Though they have not received widespread attention, multi-dimensional transfer functions are a very effective way to extract specific material boundaries and convey subtle surface properties

    Three-dimensional user interfaces for scientific visualization

    Get PDF
    The focus of this grant was to experiment with novel user interfaces for scientific visualization applications using both desktop and virtual reality (VR) systems, and thus to advance the state of the art of user interface technology for this domain. This technology has been transferred to NASA via periodic status reports and papers relating to this grant that have been published in conference proceedings. This final report summarizes the research completed over the past three years, and subsumes all prior reports
    corecore