21,566 research outputs found

    Feature Driven Learning Techniques for 3D Shape Segmentation

    Get PDF
    Segmentation is a fundamental problem in 3D shape analysis and machine learning. The abil-ity to partition a 3D shape into meaningful or functional parts is a vital ingredient of many down stream applications like shape matching, classification and retrieval. Early segmentation methods were based on approaches like fitting primitive shapes to parts or extracting segmen-tations from feature points. However, such methods had limited success on shapes with more complex geometry. Observing this, research began using geometric features to aid the segmen-tation, as certain features (e.g. Shape Diameter Function (SDF)) are less sensitive to complex geometry. This trend was also incorporated in the shift to set-wide segmentations, called co-segmentation, which provides a consistent segmentation throughout a shape dataset, meaning similar parts have the same segment identifier. The idea of co-segmentation is that a set of same class shapes (i.e. chairs) contain more information about the class than a single shape would, which could lead to an overall improvement to the segmentation of the individual shapes. Over the past decade many different approaches of co-segmentation have been explored covering supervised, unsupervised and even user-driven active learning. In each of the areas, there has been widely adopted use of geometric features to aid proposed segmentation algorithms, with each method typically using different combinations of features. The aim of this thesis is to ex-plore these different areas of 3D shape segmentation, perform an analysis of the effectiveness of geometric features in these areas and tackle core issues that currently exist in the literature.Initially, we explore the area of unsupervised segmentation, specifically looking at co-segmentation, and perform an analysis of several different geometric features. Our analysis is intended to compare the different features in a single unsupervised pipeline to evaluate their usefulness and determine their strengths and weaknesses. Our analysis also includes several features that have not yet been explored in unsupervised segmentation but have been shown effective in other areas.Later, with the ever increasing popularity of deep learning, we explore the area of super-vised segmentation and investigate the current state of Neural Network (NN) driven techniques. We specifically observe limitations in the current state-of-the-art and propose a novel Convolu-tional Neural Network (CNN) based method which operates on multi-scale geometric features to gain more information about the shapes being segmented. We also perform an evaluation of several different supervised segmentation methods using the same input features, but with vary-ing complexity of model design. This is intended to see if the more complex models provide a significant performance increase.Lastly, we explore the user-driven area of active learning, to tackle the large amounts of inconsistencies in current ground truth segmentation, which are vital for most segmentation methods. Active learning has been used to great effect for ground truth generation in the past, so we present a novel active learning framework using deep learning and geometric features to assist the user in co-segmentation of a dataset. Our method emphasises segmentation accu-racy while minimising user effort, providing an interactive visualisation for co-segmentation analysis and the application of automated optimisation tools.In this thesis we explore the effectiveness of different geometric features across varying segmentation tasks, providing an in-depth analysis and comparison of state-of-the-art methods

    3D Shape Segmentation with Projective Convolutional Networks

    Full text link
    This paper introduces a deep architecture for segmenting 3D objects into their labeled semantic parts. Our architecture combines image-based Fully Convolutional Networks (FCNs) and surface-based Conditional Random Fields (CRFs) to yield coherent segmentations of 3D shapes. The image-based FCNs are used for efficient view-based reasoning about 3D object parts. Through a special projection layer, FCN outputs are effectively aggregated across multiple views and scales, then are projected onto the 3D object surfaces. Finally, a surface-based CRF combines the projected outputs with geometric consistency cues to yield coherent segmentations. The whole architecture (multi-view FCNs and CRF) is trained end-to-end. Our approach significantly outperforms the existing state-of-the-art methods in the currently largest segmentation benchmark (ShapeNet). Finally, we demonstrate promising segmentation results on noisy 3D shapes acquired from consumer-grade depth cameras.Comment: This is an updated version of our CVPR 2017 paper. We incorporated new experiments that demonstrate ShapePFCN performance under the case of consistent *upright* orientation and an additional input channel in our rendered images for encoding height from the ground plane (upright axis coordinate values). Performance is improved in this settin

    Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling

    Full text link
    Unlike on images, semantic learning on 3D point clouds using a deep network is challenging due to the naturally unordered data structure. Among existing works, PointNet has achieved promising results by directly learning on point sets. However, it does not take full advantage of a point's local neighborhood that contains fine-grained structural information which turns out to be helpful towards better semantic learning. In this regard, we present two new operations to improve PointNet with a more efficient exploitation of local structures. The first one focuses on local 3D geometric structures. In analogy to a convolution kernel for images, we define a point-set kernel as a set of learnable 3D points that jointly respond to a set of neighboring data points according to their geometric affinities measured by kernel correlation, adapted from a similar technique for point cloud registration. The second one exploits local high-dimensional feature structures by recursive feature aggregation on a nearest-neighbor-graph computed from 3D positions. Experiments show that our network can efficiently capture local information and robustly achieve better performances on major datasets. Our code is available at http://www.merl.com/research/license#KCNetComment: Accepted in CVPR'18. *indicates equal contributio
    • …
    corecore