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ABSTRACT

REPRESENTATION LEARNING FOR SHAPE DECOMPOSITION,
BY SHAPE DECOMPOSITION

SEPTEMBER 2022

GOPAL SHARMA

B.Tech, INDIAN INSTITUTE OF TECHNOLOGY, ROORKEE

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Evangelos Kalogerakis and Professor Subhransu Maji

The ability to parse 3D objects into their constituent parts is essential for humans to

understand and interact with the surrounding world. Imparting this skill in machines is

important for various computer graphics, computer vision, and robotics tasks. Machines

endowed with this skill can better interact with its surroundings, perform shape editing,

texturing, recomposing, tracking, and animation. In this thesis, we ask two questions.

First, how can machines decompose 3D shapes into their fundamental parts? Second,

does the ability to decompose the 3D shape into these parts help learn useful 3D shape

representations?

In this thesis, we focus on parsing the shape into compact representations, such as para-

metric surface patches and Constructive Solid Geometry (CSG) primitives, which are also

widely used representations in 3D modeling in computer graphics. Inspired by the advances

in neural networks for 3D shape processing, we develop neural network approaches to tackle

viii



shape decomposition. First, we present CSGNET, a network architecture to parse shapes

into CSG programs, which is trained using combination of supervised and reinforcement

learning. Second, we present PARSENET, a network architecture to decompose a shape into

parametric surface patches (B-Spline) and geometric primitives (plane, cone, cylinder and

sphere), trained on a large set of CAD models using supervised learning.

The training of deep neural network architectures for 3D recognition and generation

tasks requires a large amount of labeled datasets. We explore ways to alleviate this problem

by relying on shape decomposition methods to guide the learning process. Towards that

end, we first study the use of freely available metadata, albeit inconsistent, from shape

repositories to learn 3D shape features. Later we show that learning to decompose a 3D

shape into geometric primitives also helps in learning shape representations useful for

semantic segmentation tasks. Finally, since most 3D shapes encountered in real life are

textured, consisting of several fine-grained semantic parts, we propose a method to learn fine-

grained representations for textured 3D shapes in a self-supervised manner by incorporating

3D geometric priors.
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CHAPTER 1

INTRODUCTION

The ability to parse 3D objects into its constituent parts is essential for humans to

understand and interact with the surrounding world [18, 94]. Imparting this skill into

machines is important for various computer graphics, computer vision and robotics tasks.

Machines endowed with this skill can better interact with its surrounding, perform shape

editing [110], texturing, recomposing [109], tracking [37] and animation.

This thesis is mainly concerned with two topics: 3D shape decomposition and learning

3D shape representations. Specifically, we study various ways in which 3D shapes can

be decomposed into semantic parts, shape programs and geometric primitives. Further,

we study ways to induce 3D shape representations that alleviate the need for a large-scale

labelled dataset for shape decomposition.

With the availability of 3D sensors [263] and 3D shape repositories [27, 124], there is

an abundance of 3D models. These models often come in the form of polygon meshes

when they are modeled by artists, or point clouds when they are acquired from the real-

world. In the case of point clouds, it is highly desirable to reconstruct them into continuous

surfaces that can be further edited and manipulated by users. Similarly, polygon meshes are

cumbersome to edit especially with low-level geometry operations (e.g., moving vertices,

inserting polygons etc.). We are interested in approximating the shape (individual object)

with compact representations that are used by the expert in graphics modeling packages,

and can be easily used by non-expert users to manipulate the shape. For example, in

the case of 2D, in vector graphics modeling packages, shapes are often created through

higher-level primitives, such as parametric curves (e.g., Bezier curves) or basic shapes
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(circles, polygons etc.), as well as operations acting on these primitives, such as boolean

operations, deformations, extrusions, and so on. Furthermore in the case of 3D, observations

from the computer-aided design and modeling literature suggest that designers often model

shapes by constructing several non-overlapping primitives (cone, cylinder, B-spline patches

etc.) placed seamlessly. In this thesis, we are interested in the question–how to design

deep neural network architectures for the task of shape-decomposition? To this end, we

propose deep neural networks that can map a 3D object represented using point cloud or

meshes to structured representation such as programs (constructive solid geometry [131])

and parametric surface patches (B-spline) and 3D geometric primitives (cones, planes,

spheres and cylinder).

Recently, several neural network architectures have been proposed to decompose shapes

represented using point clouds [178], meshes [86], and voxels [183] into semantic parts.

Yet, these architectures for shape decomposition are limited by the ability to collect labeled

training data, which is often expensive or time consuming. We explore ways to alleviate

this problem by relying on shape decomposition methods to guide the learning process

within self-supervision regime. In this thesis, we are interested in the question–does learning

to decompose 3D shapes help in semantic segmentation tasks? In order to answer this

question, we first study the use of freely available metadata, albeit inconsistent, from shape

repositories to learn 3D shape features. Later we show that learning to decompose a 3D

shape into geometric primitives also helps in learning shape representations useful for

semantic segmentation tasks.

Finally, since most 3D shapes encountered in real-life are textured consisting of several

fine-grained semantic parts, we propose a method to learn fine-grained representations for

textured 3D shapes in a self-supervised manner. We propose an approach that uses neural-

network to produce view-invariant representation of 3D shapes, outperforming various

state-of-the-art self-supervision methods on few-shot semantic segmentation tasks.
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(a) Neural shape parser for CSG.

EditParSeNet

(b) Neural shape parser for parametric
surfaces.

Figure 1.1: Learning to decompose 3D shapes. a) CSGNet is a neural shape parser that
produces a compact program for input 3D shape. b) ParSeNet decomposes point clouds into
collections of assembled parametric surface patches including B-spline patches. Predicted
shape can be edited using the inferred parametrization.

To conclude, in this thesis I first propose two techniques that produce robust decompo-

sition and better reconstruction of shapes using several evaluation metrics in comparison

to both analytical and learning based baselines. Secondly, we propose three shape repre-

sentation learning techniques applied directly on point clouds that produce state-of-the-art

performance on shape segmentation while utilizing small amounts of labeled data and large

amounts of unlabeled/weakly labeled data. Below we introduce above-mentioned topics in

more detail.

1.1 Learning to decompose 3D shapes

Our goal is to describe shapes with higher-level primitives and operations which is

highly desirable for designers since it is compact and makes subsequent editing easier. It

may also better capture certain aspects of human shape perception such as view invariance,

compositionality, and symmetry. With this goal in mind, in this thesis we explore two

directions for shape parsing– a) parsing 2D and 3D shape into CSG programs (Figure 1.1a)

and b) parsing 3D point cloud into parametric surface patches (Figure 1.1b).

In Chapter 3, we develop an algorithm that parses an input image or a 3D object into

their constituent modeling primitives and operations within the framework of Constructive

Solid Geometry (CSG). CSG is a popular geometric modeling framework where shapes

are generated by recursively applying boolean operations, such as union or intersection, on
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simple geometric primitives, such as spheres or cylinders. Parsing a shape into its CSG

program poses a number of challenges. First, the number of primitives and operations is

not the same for all shapes. Second, the order of these instructions matter; small changes

in the order of operations can significantly change the generated shape. Third, the number

of possible programs grows exponentially with the program length, making learning and

inference challenging.

Existing approaches for CSG parsing are predominantly search-based [58, 83, 242]. A

significant portion of the related literature has focused on approaches to efficiently estimate

primitives in a bottom-up manner, and to search for their combinations using heuristic

optimization. While these techniques can generate complex shapes, they are prone to noise

in the input and are generally slow. Our contribution is a neural network architecture called

CSGNet that generates the program in a feed-forward manner for an input 2D image or a

3D object. CSGNet is efficient at the test time, as it can be viewed as an amortized search

procedure. Furthermore, it can be used as an initialization for search-based approaches

leading to improvements in accuracy at the cost of computation.

In Chapter 4, we aim to automate the time-consuming process of converting a 3D object

represented in a point cloud format into a piecewise parametric surface representation. An

important question that we answer is how surface patches should be represented. Patch

representations in CAD and graphics are based on well-accepted geometric properties: (a)

continuity in their tangents, normals, and curvature, making patches appear smooth, (b)

editability, such that they can easily be modified based on a few intuitive degrees of freedom

(DoFs), e.g., control points or axes, and (c) flexibility, so that a wide variety of surface

geometries can be captured.

A variety of analytical (i.e. not learning-based) algorithms [52, 96, 128, 192] have

been devised to approximate raw 3D data as a collection of geometric primitives and

B-spline surface patches: dominant themes include Hough transforms, RANSAC [192]

and clustering. We propose a learning-based approach that takes advantage of a large-
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Figure 1.2: Learning representations for 3D shapes. a) We propose to utilize metadata
such as polygon groupings and tags assigned to parts present in shape collections from
3D shape repositories to learning shape representations, b) SURFIT uses primitive fitting
as a self-supervised task for learning 3D shape representations, c) MVDECOR produces
fine-grained segmenatic segmentation for 3D shapes outperforming several SSL baselines.

scale CAD dataset consisting of single objects [124] for surface fitting task. We propose

PARSENET, a parametric surface fitting network architecture which produces a compact,

editable representation of a point cloud as an assembly of geometric primitives, including

open or closed B-spline patches.

PARSENET is trained using ABC dataset, which provides meshes with rich annotations

of surface patches. Utilizing this dataset, PARSENET models a richer class of surfaces than

prior work, which only handles basic geometric primitives such as planes, cuboids and

cylinders [139, 192]. PARSENET includes a novel neural network (SPLINENET) to estimate

an open or closed B-spline model of a point cloud patch that provides richness and flexibility

highly desired in shape design. Our contribution is an end-to-end, differentiable pipeline

that decomposes the point cloud into segments and fits parametric surface patches to each

segment giving state-of-the-art performance on parametric surface fitting task.

Our approach mainly works on inputs with single objects in comparison to scenes [112].

To extend this work to scenes requires development of dataset consisting of scenes annotated

with primitives and a learning-based hierarchical approach to primitive fitting.
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1.2 Learning representations for 3D shape understanding

3D recognition tasks such as shape recognition and shape segmentation require large

amounts of annotated dataset, which incurs large manual labor and cost. This motivates

the need of label-efficient learning approaches (as shown in Figure 1.2) which can use

freely available data to learn shape representations. In this thesis, we explore three label-

efficient approaches to learn 3D shape representation useful for down-stream tasks– 1)

using inconsistent part hierarchies available in 3D shape repositories to pre-train the neural

network, 2) using primitive fitting under self-supervision regime to train the neural network

and 3) using multi-view correspondence learning to train neural network to produce fine-

grained features for 3D shapes.

In Chapter 5, we utilize the metadata associated with shapes (individual objects) from

online (3D Warehouse) repository. This metadata consists of information about geometric

primitives (e.g., polygons in 3D meshes) organized in groups, often arranged in hierarchy,

as well as color, material and semantic tags assigned to them. These metadata originates

from the modeling decisions of designers, which are likely to be correlated with high-level

semantics. These metadata have a high level of variability which is a consequence of

variability in goals and expertise of designers, as shown in Figure 1.3. Our approach consists

of a deep network that maps each point in a 3D shape to a fixed dimensional embedding.

The network is trained in a way such that the embedding reflects the user-provided hierarchy

and tags. We propose a robust tree-aware metric to supervise the point embedding network

that offers better generalization to semantic segmentation tasks over a baseline scheme that

is tree-agnostic (only considers the leaf-level groupings). The point embedding network

trained on hierarchies also improves over models trained on shape reconstruction tasks that

leverage the 3D shape geometry but not their metadata. Finally, when tags are available, we

show that the embeddings can be fine-tuned leading to further improvements in performance.

Our approach produces object-level representations instead of scene-level representations

because the 3D Warehouse dataset contains models of individual objects only. Theoretically
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Figure 1.3: Inconsistent shape decomposition. Our dataset consist of shapes segmented
into parts without any semantic information. Notice that shapes of same category can be
segmented differently from each other. Here different color represents different leaf node in
the part-hierarchy.

our approach can also work on scenes if object-level and part-level hierarchy information is

provided.

In Chapter 6, we present a self-supervised approach for learning 3D shape representations

by decomposing the surface of a 3D object into geometric primitives. It improves part

segmentation models when learning from a few labeled examples. Our approach exploits

the fact that parts of 3D objects are often aligned with simple geometric primitives, such as

ellipsoids and cuboids, as shown in the Figure 1.4. Even though these primitives capture

3D objects at a rather coarse level, the induced partitions provide a strong prior for learning

part segmentation networks. This purely geometric task allows us to utilize vast amounts of

unlabeled data in existing 3D shape repositories to guide representation learning for part

segmentation, which is especially useful in the few-shot setting. The primitive fitting module

follows a novel iterative clustering and primitive parameter estimation scheme based on the

obtained per-point embeddings. It is fully differentiable, thus, the whole architecture can be

trained end-to-end. The self-supervised objective minimizes a reconstruction loss, computed

as the Chamfer distance between the 3D surface and the collection of fitted primitives.

Annotating 3D shapes for fine-grained semantic segmentation is often done using 2D

projections of the shape to avoid the need for 3D manipulation operations. This is especially

true for shapes that lack structure, such as primitives, that can be easily selected in 3D.

Furthermore, 2D CNNs are better at modelling high-resolution details and texture, compared

to their 3D counterparts. Keeping these observations in mind, in Chapter 8 we propose

MVDECOR [205], a self-supervised technique for learning dense 3D shape representations
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Figure 1.4: Primitive fitting as a self-supervised task for learning 3D shape representa-
tions. Top row: 3D shapes represented as point clouds, where the color indicates the parts
such as wings and engines. The induced partitions and shape reconstruction obtained by
fitting ellipsoids to each shape using our approach are shown in the middle row and bottom
row respectively. The induced partitions have a significant overlap with semantic parts.

based on the task of learning correspondences across views of a 3D shape. At training

time we render 3D shapes from multiple views with known correspondences and setup a

contrastive learning task to train 2D CNNs. The learned 2D representations can be directly

used for part segmentation on images, or projected onto the shape surface to produce a 3D

representation for 3D tasks. The approach works well in standard few-shot fine-grained

3D part segmentation benchmarks, outperforming prior work based on 2D and 3D self-

supervised learning. Though, our approach produces representation of single objects, but

it can also be applied on multiple objects and scenes if the pixel-level correspondence is

provided.

1.3 Summary of Publications
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CHAPTER 2

BACKGROUND

In this Chapter we provide background information on topics such as representation

learning for 3D and shape decomposition.

2.1 Representation Learning for 3D

In the past, researchers have developed several shape descriptors for 3D object recogni-

tion problems, that find their applications in computer vision and computer graphics. These

shape descriptors work directly on shapes represented using point cloud, polygonal meshes,

voxel-grids or implicit surfaces. These descriptors are commonly hand-designed based on

surface properties. For example, a shape can be represented with histograms or bag-of-words

model using surface properties such as normals and curvatures [97], triangle areas, local

shape diameters [30], heat kernel signatures on polygonal meshes [23], or extensions of

SIFT and SURF features descriptors to 3D voxel grids [122], etc. These descriptors are

largely “hand-engineered” and require extensive hyper-parameter tuning. Furthermore, these

descriptors are not rich enough to capture all characteristics of the shape.

Modern approaches for representation learning rely on deep learning. Deep learning is a

class of machine learning algorithms that enables computers to build abstract concepts from

simpler ones. This is done using composition of functions, also called layers, which extract

progressively abstract features from raw inputs. Convolutional neural network (CNN) [135]

is a popular class of networks with diverse applications. CNN is a specialized kind of neural

network for processing data that has a known grid-like topology and employ convolution as

an operation in at least one of the layers of the network. A simple example of representation
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learning is training a feed-forward neural network for classification task, e.g. a CNN for

object recognition task. In this, an image is input to the CNN which extracts increasing

abstract features of the input using several convolutional layers with non-linearity and the

last layer being a linear classifier. The rest of the network learns to provide useful features

for this classifier layer.

In recent years, 2D CNNs have been used for tasks related to image recognition [90,129,

207] and generation [180] by training on large scale image datasets [45]. 2D CNNs have

also found their utility in video recognition [9] and generation tasks [142]. 3D CNNs have

been used to learn representations for video that incorporate temporal dimension [111].

Several deep neural networks have been proposed to learn representations for 3D shapes.

Mesh CNNs are proposed for 3D data represented using polygonal meshes [85,156,176,197].

VoxelNet [42, 220] was proposed for shapes represented using voxel-grid. To improve the

computation speed and memory requirements, OctNet [183] was proposed to use the Octree

structure to utilize the sparsity of the voxel representation. Taking inspiration from works on

point cloud learning architectures (PointNet [213] and PointNet++ [179]) to process point

clouds, several works have proposed doing convolutions over the graphs constructed over

point clouds [134, 239, 264]. Choy et al. [38] proposed 4-dimensional convolutional neural

networks for spatio-temporal perception that can directly process such 3D-videos using high-

dimensional convolutions. They adopted sparse tensors and propose the generalized sparse

convolution which encompasses all discrete convolutions. Multi-view approaches [117,212]

have also been explored for shape classification and segmentation. To train these models

for learning representation of 3D shapes, several small and large-scale dataset have been

proposed–ModelNet40, ShapeNet [27], ScanNet [42] , S3DIS [14], SemanticKITTI [16],

ABC [124] etc.
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2.1.1 Self-supervised learning

Many tasks in computer vision and computer graphics have been solved with the help

of supervised learning. The supervised learning relies on large amount of labeled data,

which is often time consuming and expensive process. For several applications collecting

large amount of data is quite hard. To overcome these limitation, several works learn

representation for images and 3D shapes under self-supervision paradigm.

With the availability of large amount of images on the internet and 3D shapes from online

repositories, self-supervised learning has gained popularity and produced good results on

several tasks like image classification, detection and segmentation, along with tasks like 3D

shape classification, shape segmentation and scene segmentation. Self-supervised learning

is a form of unsupervised learning where data itself provides the supervision. The idea is to

withhold a part of the data and task the neural network to predict hidden information. This

task is a ‘proxy’ task or ‘pre-text’ task, where the goal is not to solve this task perfectly but

to learn representations useful for other down-stream tasks like classification, segmentation

etc.

Below we briefly discuss several self-supervision tasks.

2.1.1.0.1 Self-supervision in images. In the past, researchers have used auto-encoder

to learn efficient codings of the unlabeled dataset. The autoencoder learns representation of

the input image for dimensionality reduction by training the network to ignore noise in the

data. Hinton et al. [92] used greedy layer-wise unsupervised pretraining as an initialization

of deep autoencoders to learn representation for images.

With the abundance of colored images freely available from the internet, several works

[132,229] have proposed a simple colorization as a self supervision task. Given a gray-scale

image, the task is to predict colored version of the image, where output colors are represented

in quantized CIE Lab color space.

Ideally, one expects that the small transformations in the image does not change the

semantic meaning of the image, hence the representations produced by the neural network
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should also remain same under these transformations. Following this observation, several

works [32, 89, 248] use contrasting learning to encourage similarity between representa-

tions of an image under different transformations. Wu et al. [248] setup a non-parametric

classification problem at the instance level to learn image level features such that visually

similar instances of objects also have similar embeddings. He et al. [89] build a dynamic

dictionary with a queue and a moving-averaged encoder enabling large and consistent dictio-

nary on-the-fly to generate negative instances for effective contrastive learning. BYOL [77]

achieves better results without using negative samples with the help of Batch-normalization

that avoid collapse of the instance embeddings.

If we geometrically transform the object in an image, its representation should also

change in the same way. This observation is utilized in several works for self supervision

[49, 72, 165]. Gidaris et al. [72] proposed a rotation prediction of the image as a pre-text

task. In this, the input image is rotated randomly to {0, 90, 180, 270} degrees, and the task

for the network is to predict the correct rotation. Doersch et al. [49] predict the relative

location of a patch w.r.t another patch, both sampled from the same image. To correctly

solve this, the network has to learn the spatial context of the object.

Recently, He et al. [88] proposed masked-autoencoder based on transformer architecture

that define reconstructing the masked input image as a self-supervision task. Their approach

outperforms several supervised and self-supervised baselines.

2.1.1.0.2 Self-supervision tasks for videos. Videos follow the arrow of time, i.e. they

are in chronological order. Several works [157, 237] have proposed using this property

to learning useful representation for videos that captures low level physics like direction

of gravity (things fall when dropped from a height), nature of living beings (human walk

while facing front), causality (egg can be broken but vice-versa is not true) etc. Mishra et

al. [157] proposed using temporal consistency as a self supervision task which improves

the performance of down-stream action recognition task. Tracking is also used for self-

supervision [237], where two patches from the same tracklet are labeled positive patches
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and two unrelated patches are labeled negative patches under triplet loss regime to train

the network. Representations learned in this manner are helpful for downstream tasks. The

idea of colorization has also been extended to videos [229], where the task is to copy color

from a reference frame (colored) to target frame (gray-scale). To solve this task, the network

needs to keep track of correlated pixels, thus discriminating static from dynamic regions of

the image.

2.1.1.0.3 Self-supervision for 3D shapes. Similarly, self supervised learning tasks are

proposed for 3D representation learning for objects and scenes. For detailed review of the

literature, please refer to the Chapter 6 and 8.

2.2 3D shape Decomposition

There is a large body of work dealing with shape decomposition done using both analytic

and learning-based techniques. Below we briefly describe these works.

2.2.1 Low-level and mid-level features

Local surface properties such as normals and principal curvatures induce a partial

local structures that helps in solving several tasks such as edge feature detection [79, 241],

segmentation, classification and surface reconstruction [104, 166]. Classical approaches

that extract local surface features such as normals and curvatures have relied on fitting

n-jet surfaces to point clouds with the help of least squares fitting [26]. Ridge-valley

lines, curves defined via first and second-order curvature derivatives, are powerful shape

descriptors. The estimation of ridge-valley structures have been explored for shape analysis,

face recognition [81] and shape segmentation. Ohtake et al. [167] proposed combining

multi-level implicit surface fitting and finite difference approximations to get ridge-valley

lines on meshes. Kalogerakis et al. [118] proposed a robust framework for extracting lines

of curvatures on a noisy point cloud using robust statistical estimates of surface normal and

curvature.
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Several deep-learning based approaches have shown good performance in local feature

estimation, such as normals and curvature for surface reconstruction [17]. EC-Net [256]

learns edges on point clouds using a deep-network that operates on patches of point clouds.

Loizou et al. [144] detects boundaries of parts in 3D shapes represented as point clouds

with the help of a graph neural network. Wang et al. [236] proposed PIE-Net a learnable

technique to identify feature edges in 3D point cloud data. These edges are further inferred

as a collection of parametric curves (i.e., lines, circles, and B-splines).

A survey of classical approaches to segmentation of 3D shapes is provided by Chen

et al. [33]. We also provide reviews of recent works on segmentation of 3D shapes in the

Chapters 5, 6 and 8.

2.2.2 Shape parsing

A variety of analytical (i.e. not learning-based) as well as learning-based algorithms have

been devised to approximate raw 3D data as a collection of geometric primitives. Details of

these approaches are discussed in Chapter 3 and Chapter 4. Here, we will briefly discuss

recent development in this area.

Recently, several works have improved object and scene parsing. Paschalidou et al. [171]

propose 3D primitive representation (called neural-parts) to approximate a shape that defines

primitives using invertible neural networks. This leads to parsimonious representation of a

shape using primitives that are more aligned with semantic parts of a 3D shape. Kawana et

al. [119] proposed neural star domain that learns primitive shapes in the star domain, where

each primitive is defined using a few parameters allowing intuitive shape editing. Both

neural-parts and neural start-domain allows unsupervised training of the neural network

using both implicit and explicit representation of shape leading to better reconstruction of

shapes in comparison to just using one representation. Yu et al. [255] proposed CAPRI-Net

that parses an input 3D shape into a compact assembly of quadric surface primitives via

constructive solid geometry (CSG) operations in a completely unsupervised fashion.
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Recently, several works have focused on extending the idea of primitive fitting to high

resolutions point clouds. In the case of high-resolution point cloud scans, the challenge is to

detect large as well as small primitives. Le et al. [133] proposed Cascaded Primitive Fitting

Networks (CPFN) that relies on an adaptive patch sampling network to assemble detection

results of global and local primitive detection networks. Huang et al. [106] proposed an

approach for primitive instance segmentation under high resolution point clouds (both

objects and scenes) by transforming the global segmentation into easier local tasks. They

use adversarial network to decide whether two points belong to the same primitive. Finally

during test time, a region growing method is used to segmentation the entire point cloud.
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CHAPTER 3

SHAPE PARSERS FOR CONSTRUCTIVE SOLID GEOMETRY

3.1 Introduction

Figure 3.1: Our shape parser produces a program that generates an input 2D or 3D
shape. On top is an input image of 2D shape, its program and the underlying parse tree
where primitives are combined with boolean operations. On the bottom is an input voxelized
3D shape, the induced program, and the resulting shape from its execution.

The goal of our work is to develop an algorithm that parses shapes into their constituent

modeling primitives and operations within the framework of Constructive Solid Geometry

(CSG) [131]. CSG is a popular geometric modeling framework where shapes are gener-

ated by recursively applying boolean operations, such as union or intersection, on simple

geometric primitives, such as spheres or cylinders. Figure 7.1 illustrates an example where
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a 2D shape (top) and a 3D shape (bottom) are generated as a sequence of operations over

primitives or a visual program. Yet, parsing a shape into its CSG program poses a number

of challenges. First, the number of primitives and operations is not the same for all shapes

i.e., our output does not have constant dimensionality, as in the case of pixel arrays, voxel

grids, or fixed point sets. Second, the order of these instructions matter — small changes

in the order of operations can significantly change the generated shape. Third, the number

of possible programs grows exponentially with the program length, making learning and

inference challenging.

Existing approaches for CSG parsing are predominantly search-based. A significant

portion of related literature has focused on approaches to efficiently estimate primitives

in a bottom-up manner, and to search for their combinations using heuristic optimization.

While these techniques can generate complex shapes, they are prone to noise in the input

and are generally slow. Our contribution is a neural network architecture called CSGNET

that generates the program in a feed-forward manner. The approach is inspired by the ability

of deep networks for generative sequence modeling such as for speech and language. As

a result CSGNET is efficient at test time, as it can be viewed as an amortized search [71]

procedure. Furthermore, it be used as an initialization for search-based approaches leading

to improvements in accuracy at the cost of computation.

At a high-level, CSGNET is an encoder-decoder architecture that encodes the input shape

using a convolutional network and decodes it into a sequence of instructions using a recurrent

network (Figure 7.2). It is trained on a large synthetic dataset of automatically generated 2D

and 3D programs (Table 3.2). However, this leads to poor generalization when applied to new

domains. To adapt models to new domains without program annotations, we employ policy

gradient techniques from the reinforcement learning literature [245]. Combining the parser

with a CSG rendering engine allows the networks to receive feedback based on the visual

difference between the input and generated shape, and the parser is trained to minimize this

difference (Figure 7.2). Furthermore, we investigate two network architectures: a vanilla
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recurrent network (CSGNET), and a new variant called CSGNETSTACK (Figure 3.3).

This new variant stores intermediate shapes produced during the execution of the CSG

program, inspired by call or execution stacks [48]. This stack can also be seen as a form of

explicit memory in our network encoding the intermediate program state. Our experiments

demonstrate that this improves the overall accuracy of the generated programs while using

less training data.

We evaluate the CSGNET and CSGNETSTACK architectures on a number of shape

parsing tasks. Both offer consistently better performance than a nearest-neighbor baseline

and are significantly more efficient than an optimization based approach. Reinforcement

learning improves their performance when applying them to new domains without requiring

ground-truth program annotations making the approach more practical (Table 3.4). We also

investigate the effect of the training data size and reward choices used in the policy gradient

algorithm [163] on the performance of the parser. Finally, we evaluate the performance on

the task of primitive detection and compare it with a Faster R-CNN detector [182] trained

on the same dataset. CSGNET offers 4.2% higher Mean Average Precision (MAP) and is

4× faster compared to the Faster R-CNN detector, suggesting that joint reasoning about the

presence and ordering of objects leads to better performance for object detection (Table 3.6).

This paper extends our work that first appeared in [200], adding to it an analysis on

effect of reward shaping and training set size on the performance, as well as the stack-

augmented network architecture. Our PyTorch [4] implementation is publicly available at:

https://hippogriff.github.io/CSGNet/.

3.2 Related Work

CSG parsing has a long history and a number of approaches have been proposed in the

literature over the past 20 years. Much of the earlier work can be categorized as “bottom-up”

and focuses on the problem of converting a boundary representation (b-Rep) of the shape to

a CSG program. Our work is more related to program generation approaches using neural
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networks which have recently seen a revival in the context of natural language, graphics,

and visual reasoning tasks. We briefly summarize prior work below.

3.2.1 Bottom-up shape parsing

An early example of a grammar-based shape parsing approach is the “pictorial structure”

model [60]. It uses a tree-structured grammar to represent articulated objects and has been

applied to parsing and detecting humans and other categories [22, 59, 252]. However, the

parse trees are often shallow and these methods rely on accurate bottom-up proposals to

guide parsing (e.g., face and upper-body detection for humans). In contrast, primitive

detection for CSG parsing is challenging as shapes change significantly when boolean

operations are applied to them. Approaches, such as [24, 198, 199], assume an exact

boundary representation of primitives which is challenging to estimate from noisy or low-

resolution shapes. This combined with the fact that parse trees for CSG can be significantly

deeper makes bottom-up parsing error prone. Evolutionary approaches have also been

investigated for optimizing CSG trees [58, 84, 242], however, they are computationally

expensive.

Thus, recent work has focused on reducing the complexity of search. Tao et al. [50]

directly operates on input meshes, and converts the mixed domain of CSG trees (discrete

operations and continuous primitive locations) to a discrete domain that is suitable for

boolean satisfiability (SAT) based program synthesizers. This is different from our approach

which uses a neural network to generate programs without relying on an external optimizer.

3.2.2 Inverse procedural modeling

A popular approach to generate 3D shapes and scenes is to infer context-free, often

probabilistic “shape grammars” from a small set of exemplars, then sample grammar

derivations to create new shapes [185,210,218,228]. This approach called Inverse Procedural

Modeling (IPM) has also been used in analysis-by-synthesis image parsing frameworks

[152, 221, 257].
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Recent approaches employ CNNs to infer parameters of objects [130] or whole scenes

[187] to aid procedural modeling. A similar trend is observed in graphics applications

where CNNs are used to map input images or partial shapes to procedural model parameters

[103, 164, 186]. Wu et al. [246] detect objects in scenes by employing a network for

producing object proposals and a network that predicts whether there is an object in a

proposed segment, along with various object attributes. Eslami et al. [54] use a recurrent

neural network to attend to one object at a time in a scene, and learn to use an appropriate

number of inference steps to recover object counts, identities and poses.

Our goal is fundamentally different: given a generic grammar describing 2D or 3D

modeling instructions and a target image or shape, our method infers a derivation, or more

specifically a modeling program, that describes it. The underlying grammar for CSG is quite

generic compared to specialized shape grammars. It can model shapes in several different

classes and domains (e.g., furniture, logos, etc.).

3.2.3 Neural program induction

Our approach is inspired by recent work in using neural networks to infer programs ex-

pressed in some high-level language, e.g., to answer question involving complex arithmetic,

logical, or semantic parsing operations [15,46,114,116,140,162,181,259,260]. Approaches,

such as [100, 113], produce programs composed of functions that perform compositional

reasoning on an image using an execution engine consisting of neural modules [12]. Simi-

larly, our method produces a program consisting of shape modeling instructions to match a

target image by incorporating a shape renderer.

Other related work include the recent work by Tian et al. [224], which proposes a

program induction architecture for 3D shape modeling. Here programs contain a variety of

primitives and symmetries are incorporated with loops. While this is effective for categories

such as chairs, the lack of boolean operations is limiting. A more complex approach is

that of Ellis et al. [53], who synthesize hand-drawn shapes by combining (lines, circles,
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rectangles) into Latex programs. Program synthesis is posed as a constraint satisfaction

problem which is computationally expensive and can take hours to solve. In contrast, our

feed-forward model that takes a fraction of a second to generate a program.

3.2.4 Primitive fitting

Deep networks have recently been applied to a wide range of primitive fitting problems

for 2D and 3D shapes. Tulsiani et al. [225] proposed a volumetric CNN that predicts

a fixed number of cuboidal primitives to describe an input 3D shape. Zou et al. [268]

proposed an LSTM-based architecture to predict a variable number of boxes given input

depth images. Li et al. [138] introduced a point cloud based primitive fitting network where

shapes are represented as an union of primitives. Paschalidou et al. [172] uses superquadrics

instead of traditional cuboids. Genova et al. [69] proposed a network that predicts local

implicit functions decomposing the input shape into 3D Gaussian blobs. Huang et al. [105]

decompose an image by detecting primitives and arranging them into layers. Gao et al. [67]

train deep network to produce control points for splines using input images and point cloud.

Recent networks such as BSP-Net [34] and CvxNet [43] are built on the concept of binary

space partitioning to produce a collection of convexes that approximates the input point

cloud or an image. Deprelle et al. [47] proposed representing shapes as the combination of

learned deformable elementary 3D structures. The above approaches are trained to minimize

reconstruction error like ours. On the other hand, they focus on predicting primitives, while

our method also learns modeling operations (CSG) on them.

3.3 Designing a Neural Shape Parser

In this section, we first present a neural shape parser, called CSGNET, that induces

programs based on a CSG grammar given only 2D/3D shapes as input. We also present

another shape parser variant, called CSGNETSTACK, which incorporates a stack as a form

of explicit memory and results in improved accuracy and faster training. We show that
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Figure 3.2: Overview of our approach. Our neural shape parser consists of two parts: first
at every time step encoder takes as input a target shape (2D or 3D) and outputs a feature
vector through CNN. Second, a decoder maps these features to a sequence of modeling
instructions yielding a visual program. The rendering engine processes the program and
outputs the final shape. The training signal can either come from ground truth programs
when such are available, or in the form of rewards after rendering the predicted programs.
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Figure 3.3: Two proposed architectures of our neural shape parser CSGNET (left),
CSGNETSTACK (right). CSGNet takes the target shape as input and encodes it using a
CNN, whereas in CSGNETSTACK, the target shape is concatenated with stack St along
the channel dimension and passes as input to the CNN encoder at every time step. Empty
entries in the stack are shown in white.
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both variants can be trained to produce CSG programs in a supervised learning setting

when ground-truth programs are available. When these are not available, we show that

reinforcement learning can be used based on policy gradient and reward shaping techniques.

Finally, we describe ways to improve the shape parsing at test time through a post-processing

stage.

CSGNET. The goal of a shape parser π is to produce a sequence of instructions given an

input shape. The parser can be implemented as an encoder-decoder using neural network

modules as shown in Figure 7.2. The encoder takes as input an image I and produces an

encoding Φ(I) using a CNN. The decoder Θ takes as input Φ(I) and produces a probability

distribution over programs P represented as a sequence of instructions. Decoders can be

implemented using Recurrent Neural Networks (RNNs). We employ Gated Recurrent Units

(GRUs) [40] that have been widely used for sequence prediction tasks such as generating

natural language and speech. The overall network can be written as π(I) = Θ ◦ Φ(I). We

call this basic architecture as CSGNET (see also Figure 3.3, left).

CSGNETSTACK. The above architecture can further be improved by incorporating feed-

back from the renderer back to the network. More specifically, the encoder can be augmented

with an execution stack that stores the result of the renderer at every time step along with

the input shape. This enables the network to adapt to both current and previous rendered

results. To accomplish this, our CSG rendering engine executes the program instructions

produced by the decoder with the help of stack S = {st : t = 1, 2 . . .} at each time step t.

The stack is updated after every instruction is executed and contains intermediate shapes

produced by previous boolean operations or simply an initially drawn shape primitive. This

stack of shapes is concatenated with the target shape, all stored as binary maps, along the

channel dimension. The concatenated map is processed by the network at the next time

step. Instead of taking all elements of the stack, which vary in number depending on the
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generated program, we only take the top-K maps of the stack. Empty entries in the stack

are represented as all-zero maps (see also Figure 3.3, right). At the first time step, the

stack is empty, so all K maps are zero. While the stack contains complete information

about the program execution at any point in time, it can grow arbitrarily deep. Keeping the

top-K elements of the stack provides a way to trade-off the computational and memory

requirements with the amount of information about the program execution.

In our implementation, the parser π takes Z = [I, S] as input of size 64× 64× (K + 1)

for 2D networks and 64×64×64× (K+1) for 3D networks, where I is the input shape, S

is the execution stack of the renderer, and K is the size of the stack. The number of channels

is (K + 1) since the target shape, also represented as 642 (or 643 in 3D), is concatenated

with the stack. Details of the architecture are described in Section 3.4. Similarly to the

basic CSGNET architecture, the encoder takes Z as input and yields a fixed length encoding

Φ(Z), which is passed as input to the decoder Θ to produce a probability distribution over

programs P . The stack-based network can be written as π(Z) = Θ ◦ Φ(Z). We call this

stack based architecture CSGNETSTACK. The difference between the two architectures is

illustrated in Figure 3.3.

Grammar. The space of programs can be efficiently described according to a context-free

grammar [95]. A context-free grammar is a formal grammar when its production rules

can be applied regardless of the context of its non-terminal symbols. For example, in

constructive solid geometry the instructions consist of drawing primitives (eg, spheres,

cubes, cylinders, etc) and performing boolean operations described as a grammar with the

following production rules:
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S → E

E → E E T | P

T → OP1|OP2| . . . |OPm

P → SHAPE1|SHAPE2| . . . |SHAPEn

Each rule indicates possible derivations of a non-terminal symbol separated by the |

symbol. Here S is the start symbol, OPi is chosen from a set of defined modeling op-

erations and the SHAPEi is a primitive chosen from a set of basic shapes at different

positions, scales, orientations, etc. Instructions can be written in a standard post-fix no-

tation, e.g., SHAPE1SHAPE2OP1SHAPE3OP2, which can be written in in-fix notation as:

(SHAPE1 OP1 SHAPE2) OP2 SHAPE3 . Table 3.4 shows an example of a program predicted

by the network and corresponding rendering process.

3.3.1 Learning

Given the input shape I and execution stack S of the renderer, the parser network π

generates a program that minimizes a reconstruction error between the shape produced by

executing the program and a target shape. Note that not all programs are valid. Our learning

incorporates rewards promoting the generation of programs that are both valid and capture

the target shape well.

3.3.1.1 Supervised learning

When target programs are available both CSGNET and CSGNETSTACK variants can be

trained with standard supervised learning techniques. Training data consists of N shapes, P

corresponding programs, and also in the case of CSGNETSTACK S stacks, program triplets

(I i, Si, P i), i = 1, . . . , N . The ground-truth program P i can be written as a sequence of

instructions gi1, gi2 .. giTi , where Ti is the length of the program P i. Similarly, in the case of

CSGNETSTACK, the Si can be written as sequence of states of stack si1, si2 .. siTi used by the
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Rendered Image

union(P3, P4)

intersect(P2, E1)

subtract(P1, E2)

P3 P4

E1P2

E2P1

Out

Instruction Execution Stack
circle(32,32,28) push circle(32,32,28) [P1]

square(32,40,24) push square(32,40,24) [P2 P1]

circle(48,32,12) push circle(48,32,12) [P3 P2 P1]

circle(24,32,16) push circle(24,32,16) [P4 P3 P2 P1]

union A=pop; B=pop; push(B∪A) [E1 P2 P1] // E1=P3∪P4
intersect A=pop; B=pop; push(B∩A) [E2 P1] // E2=P2∩E1
subtract A=pop; B=pop; push(B-A) [Out] // Out=P1-E2

Figure 3.4: Example program execution. Each row in the table from the top shows
the instructions, program execution, and the current state of the stack of the shift-reduce
CSG parser. On the right is a graphical representation of the program. An instruction
corresponding to a primitive leads to push operation on the stack, while an operator
instruction results in popping the top two elements of the stack and pushing the result of
applying this operator.
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rendering engine while executing the instructions in program P i. Note that while training

in supervised setting, the stack st is generated by the renderer while executing ground

truth instructions g1:t, but during inference time, the stack is generated by the renderer

while executing the predicted instructions. For both network variants, the RNN produces a

categorical distribution π for both variants.

The parameters θ for either variant can be learned to maximize the log-likelihood of the

ground truth instructions:

L(θ) =
N∑
i=1

Ti∑
t=1

log πθ(g
i
t|gi1:t−1, s

i
1:t−1, I

i) (3.1)

3.3.1.2 Learning with policy gradients

Without target programs one can minimize a reconstruction error between the shape

obtained by executing the program and the target. However, directly minimizing this

error using gradient-based techniques is not possible since the output space is discrete and

execution engines are typically not differentiable. Policy gradient techniques [245] from the

reinforcement learning (RL) literature can instead be used in this case.

Concretely, the parser πθ, that represents a policy network, can be used to sample a pro-

gram y = (a1,a2 .. aT ) conditioned on the input shape I, and in the case of CSGNETSTACK,

also on the stack S = (s1, s2 .. sT ). Note that while training using policy gradient and

during inference time, the stack st is generated by the renderer while executing predicted

instructions by the parser since ground-truth programs are unavailable. Then a reward

R can be estimated by measuring the similarity between the generated image Î obtained

by executing the program and the target shape I . With this setup, we want to learn the

network parameters θ that maximize the expected rewards over programs sampled under the

predicted distribution πθ(y|S, I) across images I sampled from a distribution D:

EI∼D
[
Jθ(I)

]
= EI∼D

T∑
t=1

Eyt∼πθ(y|s1:t−1,I) [R]
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The outer expectation can be replaced by a sample estimate on the training data. The

gradient of the inner expectation can be obtained by rearranging the equation as 1:

∇θJθ(I) = ∇θ

∑
y

πθ(y)R =
∑
y

∇θ log πθ(y)
[
πθ(y)R

]
Here we use the identity ∇θπθ(y) = πθ(y)∇θ log πθ(y). It is often intractable to compute

the expectation Jθ(I) since the space of programs is very large. Hence, the expectation

must be approximated. The REINFORCE algorithm computes a Monte-Carlo estimate (see

also [216, 245] for derivations and explanation of the policy gradient algorithm). This is

expressed as:

∇θJθ(I) =
1

M

M∑
m=1

T∑
t=1

∇ log πθ(â
m
t |âm1:t−1, ŝ

m
1:t−1, I)Rm

by sampling M programs from the policy πθ. Each program ym is obtained by sampling

instructions âmt=1:T from the distribution âmt ∼ πθ(at|âm1:t−1; ŝm1:t−1, I) at every time step t

until the stop symbol (EOS) is sampled. The reward Rm is calculated by executing the

program ym. Sampling-based estimates typically have high variance that can be reduced by

subtracting a baseline without changing the bias as:

∇θJθ(I)=
1

M

M∑
m=1

T∑
t=1

∇θ log πθ(â
m
t |âm1:t−1, ŝ

m
1:t−1, I)(Rm − b) (3.2)

A good choice of the baseline is the expected value of returns starting from t [217, 245]. We

compute the baseline as the running average of past rewards.

Reward. The rewards should be primarily designed to encourage visual similarity of the

generated program with the target. Visual similarity between two shapes is measured using

1conditioning on stack and input image is removed for the sake of brevity.
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the Chamfer distance (CD) between points on the silhouettes of each shape. We focus on the

silhouettes because these tend to be more related to the perceptual similarity of shapes [145].

The CD is between two point sets, x and y, is defined as follows:

Ch(x,y) =
1

2|x|
∑
x∈x

min
y∈y
‖x− y‖2 +

1

2|y|
∑
y∈y

min
x∈x
‖x− y‖2

The points are scaled by the image diagonal, thus Ch(x,y) ∈ [0, 1] ∀x,y. The distance

can be efficiently computed using distance transforms. In our implementation, we also

set a maximum length T for the induced programs to avoid having too long or redundant

programs (e.g., repeating the same modeling instructions over and over again). We then

define the reward as:

R =


f
(
Ch(Edge(I),Edge(<(y)

)
, y is valid

0, y is invalid

where f is a reward shaping function and < is the CSG rendering engine that renders the

program y into a binary image. Note that a valid program follows the grammar described in

the Section 3.4.1, which can be verified by the execution engine. Since invalid programs get

zero reward, the maximum length constraint on the programs helps the network to produce

shorter programs with high rewards. We use maximum length T = 13 in all of our RL

experiments. The function f shapes the CD as f(x) = (1 − x)γ with an exponent γ > 0.

Higher values of γ makes the reward closer to zero, thereby making the network to produce

programs with smaller CD. Table 3.1 (left) shows the dynamics of reward shaping function

with different γ value and (right) shows that increasing γ values decreases the average

CD calculated over the test set. We choose γ = 20 in our experiments, as this gives best

performance on our validation set as shown in Table 3.1.
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Table 3.1: Reward shaping. (Left) We visualize the skewness introduced by the γ in the
reward function. (Right) Larger γ value produces smaller CD (in number of pixels) when
our model is trained using REINFORCE.

3.3.2 Inference

Greedy decoding and beam search. Estimating the most likely program given an input

is intractable using RNNs. Instead one usually employs a greedy decoder that picks the

most likely instruction at each time step. An alternate is to use a beam search procedure that

maintains the k-best likely sequences at each time step. In our experiments we report results

with varying beam sizes.

Visually-guided refinement. Both parser variants produce a program with a discrete set

of primitives. However, further refinement can be done by directly optimizing the position

and size of the primitives to maximize the reward. The refinement step keeps the program

structure of the program and primitive type fixed but uses a heuristic algorithm [177] to

optimize the parameters using feedback from the rendering engine. In our experiments, we

observed that the algorithm converges to a local minima in about 10 iterations of refinement

and consistently improves the results.

3.4 Experiments

We describe our experiments on different datasets exploring the generalization capabili-

ties of our network variants (CSGNET and CSGNETSTACK). We first describe our datasets:
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Figure 3.5: Samples of our synthetically generated programs. 2D samples are in the top
row and 3D samples in the bottom. For clarity, the shapes are rendered in their original,
high-resolution mesh format before voxelization.

(i) an automatically generated dataset of 2D and 3D shapes based on synthetic generation of

CSG programs, (ii) 2D CAD shapes mined from the web where ground-truth programs are

not available, and (iii) logo images mined also from the web where ground-truth programs

are also not available. Below we discuss our qualitative and quantitative results on the above

dataset.

3.4.1 Datasets

To train our network in the supervised learning setting, we automatically created a large

set of 2D and 3D CSG-based synthetic programs according to the grammars described below.

Synthetic 2D shapes. We sampled derivations of the following CSG grammar to create our

synthetic dataset in the 2D case:

33



Program
Length

2D 3D
Train Val Test Train Val Test

3 25k 5k 5k 100k 10k 20k
5 100k 10k 50k 200k 20k 40k
7 150k 20k 50k 400k 40k 80k
9 250k 20k 50k - - -

11 350k 20k 100k - - -
13 350k 20k 100k - - -

Table 3.2: Statistics of our 2D and 3D synthetic dataset.

S → E;

E → EET | P (L,R);

T → intersect | union | subtract;

P → square | circle | triangle;

L→
[
8 : 8 : 56

]2
; R→

[
8 : 4 : 32

]
.

Primitives are specified by their type: square, circle, or triangle, locations L and circum-

scribing circle of radius R on a canvas of size 64× 64. There are three boolean operations:

intersect, union, and subtract. L is discretized to lie on a square grid with spacing of 8

units and R is discretized with spacing of 4 units. The triangles are assumed to be upright

and equilateral. The synthetic dataset is created by sampling random programs containing

different number of primitives from the above grammar, constraining the distribution of

various primitive types and operation types to be uniform. We also ensure that no duplicate

programs exist in our dataset. The primitives are rendered as binary images and the programs

are executed on a canvas of 64× 64 pixels. Samples from our dataset are shown in Figure

3.5. Table 3.2 provides details about the size and splits of our dataset.

Synthetic 3D shapes. We sampled derivations of the following grammar in the case of 3D

CSG:
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S → E; E → EET ;

E → sp(L,R) | cu(L,R) | cy(L,R,H)

T → intersect | union | subtract;

L→
[
8 : 8 : 56]3

R→
[
8 : 4 : 32]; H →

[
8 : 4 : 32].

The operations are same as in the 2D case. Three basic solids are denoted by ‘sp’:

Sphere, ‘cu’: Cube, ‘cy’: Cylinder. L represents the center of primitive in a 3D voxel grid.

R specifies radius of sphere and cylinder, or the size of cube. H is the height of cylinder.

The primitives are rendered as voxels and the programs are executed on a 3D volumetric grid

of size 64 × 64 × 64. We used the same random sampling method as used for the synthetic

2D dataset, resulting in 3D CSG programs. 3D shape samples are shown in Figure 3.5.

2D CAD shapes. We collected 8K CAD shapes from the Trimble 3DWarehouse dataset [6]

in three categories: chair, desk and lamps. We rendered the CAD shapes into 64 × 64 binary

masks from their front and side views. In Section 3.4, we show that the rendered shapes can

be parsed effectively through our visual program induction method. We split this dataset

into 5K shapes for training, 1.5K validation and 1.5K for testing.

Web logos. We mined 20 binary logos from the web that can be modeled using the primitives

in our output shapes. We test our approach on these logos without further training or fine-

tuning our net on this data.

3.4.2 Implementation details

2D shape parsing. Our encoder is based on an image-based convnet in the case of 2D

inputs. In the case of CSGNETSTACK, the input to the network is a fixed size stack along

with target image concatenated along the channel dimension, resulting in an the input tensor
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Figure 3.6: Performance (Left: IOU, Right: chamfer distance) of models by changing
training size on our synthetic dataset. Training is done using x% of the complete dataset,
where x is shown on the horizontal axis. The top-k beam sizes used during decoding at test
time are shown in the legend. The performance of CSGNET (our basic non-stack neural
shape parser) is shown in blue and the performance of CSGNETSTACK (our variant that
uses the execution stack) is shown in lime. The above plots show the average of the metrics
evaluated at 4 different training runs.

of size 64× 64× (K + 1), where K is the number of used maps in the stack (stack size). In

the architecture without stack (CSGNET), K is simply set to 0. The output of the encoder

is passed as input to our GRU-based decoder at every program step. The hidden state of

our GRU units is passed through two fully-connected layers, which are then converted into

a probability distribution over program instructions through a classification layer. For the

2D CSG there are 400 unique instructions corresponding to 396 different primitive types,

discrete locations and sizes, the 3 boolean operations and the stop symbol.

3D shape parsing. In the case of 3D shapes, the encoder is based on an volumetric, voxel-

based convnet. 3D-CSGNETSTACK concatenates the stack with the target shape along the

channel dimension, resulting in an input tensor of size 64 × 64 × 64 × (K + 1), where

K is the number of used maps in the stack (stack size). In the architecture without stack

(3D-CSGNET), K is simply set to 0. The encoder comprises of multiple layers of 3D

convolutions yielding a fixed size encoding vector. Similarly to the 2D case, the GRU-based

decoder takes the output of the encoder and sequentially produces the program instructions.
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Method IOU (k=1) ↑ IOU (k=10) ↑ CD (k=1) ↓ CD (k=10) ↓
NN 73.9 - 1.93 -
CSGNET 86.77 88.74 0.70 0.32
CSGNETSTACK 91.33 93.45 0.60 0.12

Table 3.3: Comparison of a NN baseline with the supervised network without stack
(CSGNET) and with stack (CSGNETSTACK) on the synthetic 2D dataset. Results are
shown using Chamfer Distance (CD) and IOU metric by varying beam sizes (k) during
decoding. CD is in number of pixels.

In this case, there are 6635 unique instructions with 6631 different types of primitives with

different sizes and locations, plus 3 boolean modeling operations and a stop symbol.

During training, on synthetic dataset, we sample images/3D shapes rendered from

programs of variable length (up to 13 for 2D and up to 7 for 3D dataset) from training

dataset from Table 3.2. More details about the architecture of our encoder and decoder

(number and type of layers) are provided in the Appendix.

For supervised learning, we use the Adam optimizer [120] with learning rate 0.001

and dropout of 0.2 in non-recurrent network connections. For reinforcement learning, we

use stochastic gradient descent with 0.9 momentum, 0.01 learning rate, and with the same

dropout as above.

3.4.3 Results

We evaluate our network variants in two different ways: (i) as models for inferring the

entire program, and (ii) as models for inferring primitives, i.e., as object detectors.

3.4.3.1 Inferring programs

Evaluation on the synthetic 2D shapes. We perform supervised learning to train

our stack-based network CSGNETSTACK and the non-stack-based network CSGNET on

the training split of this synthetic dataset, and evaluate performance on its test split under

different beam sizes. We compare with a baseline that retrieves a program in the training

split using a Nearest Neighbor (NN) approach. In NN setting, the program for a test image
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Figure 3.7: Comparison of performance on synthetic 2D dataset. a) Input image, b) NN-
retrieved image, c) top-1 prediction of CSGNET, d) top-1 prediction of CSGNETSTACK, e)
top-10 prediction of CSGNET and f) top-10 prediction of CSGNETSTACK.

38



Method Train Test
CD (@refinement iterations) ↓

i=0 i=1 i=2 i=4 i=10 i=∞
NN - - 1.92 1.22 1.13 1.08 1.07 1.07
CSGNET Supervised k=1 2.45 1.2 1.03 0.97 0.96 0.96
CSGNET Supervised k=10 1.68 0.79 0.67 0.63 0.62 0.62
CSGNETSTACK Supervised k=1 3.98 2.66 2.41 2.29 2.25 2.25
CSGNETSTACK Supervised k=10 1.38 0.56 0.45 0.40 0.39 0.39
CSGNET RL k=1 1.40 0.71 0.63 0.60 0.60 0.60
CSGNET RL k=10 1.19 0.53 0.47 0.41 0.41 0.41
CSGNETSTACK RL k=1 1.27 0.67 0.60 0.58 0.57 0.57
CSGNETSTACK RL k=10 1.02 0.48 0.43 0.35 0.34 0.34
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CSGNet + RL k=1
CSGNet + RL k=10
CSGNetStack + RL k=1
CSGNetStack + RL k=10

Table 3.4: Comparison of various approaches on the CAD shape dataset. CSGNET:
neural shape parser without stack, CSGNETSTACK: parser with stack, NN: nearest neighbor.
Left: Results are shown with different beam sizes (k) during decoding. Fine-tuning using
RL improves the performance of both network, with CSGNETSTACK perfoming the best.
Increasing the number of iterations (i) of visually guided refinement during testing also
improves results significantly. i =∞ corresponds to running visually guided refinement till
convergence. Bottom: Inference time for different methods. Increasing number of iterations
of visually guided refinement improves the performance, with least CD in a given inference
time is produced by Stack based architecture. CD metric is in number of pixels.
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a) Target

b) NN

c) CSGNET

d) CSGNETSTACK

e) CSGNET + refine

f) CSGNETSTACK + refine

Figure 3.8: Comparison of performance on the 2D CAD dataset. a) Target image, b)
NN retrieved image, c) best result from beam search on top of CSGNET fine-tuned with
RL, d) best result from beam search on top of CSGNETSTACK fine-tuned with RL, and
refining results using the visually guided search on the best beam result of CSGNET (e) and
CSGNETSTACK (f).

is retrieved by taking the program of the train image that is most similar to the test image

using the IOU metric.

Table 3.3 compares CSGNETSTACK, CSGNET, and a NN baseline using the Chamfer

distance and IOU between the test target and predicted shapes using the complete synthetic

dataset. Our parser is able to outperform the NN method. One would expect that NN would

perform well here because the size of the training set is large. However, our results indicate

that our compositional parser is better at capturing shape variability, which is still significant

in this dataset. Results are also shown with increasing beam sizes (k) during decoding,

which consistently improves performance. Figure 3.7 also shows the programs retrieved

through NN and our generated program for a number of characteristic examples in our test

split of our synthetic dataset.

We also examine the learning capability of CSGNETSTACK with significantly less

synthetic training dataset in comparison to CSGNET in the Figure 3.6. With just 5% of the
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total dataset, CSGNETSTACK performs 80% IOU (1.3 CD) in comparison to 70% IOU

(1.7 CD) using CSGNET. The CSGNETSTACK continues to perform better compared

to CSGNET in the case of more training data. This shows that incorporating the extra

knowledge in the form of an execution stack based on the proposed architecture makes it

easier to learn to parse shapes.

Evaluation on 2D CAD shapes. For this dataset, we report results on its test split under

two conditions: (i) when training our network only on synthetic data, and (ii) when training

our network on synthetic data and also fine-tuning it on the training split of rendered CAD

dataset using policy gradients.

Table 3.4 shows quantitative results on this dataset. We first compare with the NN

baseline. For any shape in this dataset, where ground truth program is not available, NN

retrieves a shape from synthetic dataset and we use the ground truth program of the retrieved

synthetic shape for comparison.

We then list the performance of CSGNETSTACK and CSGNET trained in a supervised

manner only on our synthetic dataset. Further training with Reinforcement Learning (RL) on

the training split of the 2D CAD dataset improves the results significantly and outperforms

the NN approach by a considerable margin. This also shows the advantage of using RL,

which trains the shape parser without ground-truth programs. The stack based network

CSGNETSTACK performs better than CSGNET showing better generalization on the new

dataset. We note that directly training the network using RL alone does not yield good

results which suggests that the two-stage learning (supervised learning and RL) is important.

Finally, optimizing the best beam search program with visually guided refinement yielded

results with the smallest Chamfer Distance. Figure 3.8 shows a comparison of the rendered

programs for various examples in the test split of the 2D CAD dataset for variants of our

network. Visually guided refinement on top of beam search of our two stage-learned network

qualitatively produces results that best match the input image.
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Figure 3.9: Performance (Left: IOU, Right: chamfer distance) of CSGNET and CS-
GNETSTACK on the test split of the 2D CAD dataset wrt the size of the synthetic
dataset used to pre-train the two architectures. Pre-training is done using x% of the
complete synthetic dataset (x is shown on the horizontal axis) and fine-tuning is done on the
complete CAD dataset. CSGNETSTACK performs better while using less proportion of the
synthetic dataset for pretraining. Increasing the size of pretraining dataset beyond 15% leads
to decrease in performance, which hints at slight overfitting on the synthetic dataset domain.

Method NN
3D-CSGNET 3D-CSGNETSTACK

k=1 k=5 k=10 k=1 k=5 k=10
IOU (%) ↑ 73.2 80.1 85.3 89.2 81.5 86.9 90.5
CD ↓ 2.53 1.86 1.19 0.93 1.71 1.01 0.81

Table 3.5: Comparison of the supervised network (3D-CSGNETSTACK and 3D-
CSGNET) with NN baseline on the 3D dataset. Results are shown using IOU(%) and
Chamfer distance (CD) metrics, and varying beam sizes (k) during decoding. CD has been
multiplied by 100.

We also show an ablation study indicating how much pretraining on the synthetic dataset

is required to perform well on the CAD dataset in Figure 3.9. With just 5% of the synthetic

dataset based pretraining, CSGNETSTACK gives 60% IOU (and 1.3 CD) in comparison

to 46% IOU (and 1.9 CD), which shows the faster learning capability of our stack based

architecture. Increasing the synthetic training size used in pretraining shows slight decrease

in performance for the CSGNETSTACK network after 15%, which hints at the overfitting of

the network on the synthetic dataset domain.

42



Figure 3.10: Results for our logo dataset. a) Target logos, b) output shapes from CSGNET

and c) inferred primitives from output program. Circle primitives are shown with red
outlines, triangles with green and squares with blue.

Evaluation on Logos. We experiment with the logo dataset described in Section 3.4.1 (none

of these logos participate in training). Outputs of the induced programs parsing the input

logos are shown in Figure 3.10. In general, our method is able to parse logos into primitives

well, yet performance can degrade when long programs are required to generate them, or

when they contain shapes that are very different from our used primitives.

Evaluation on Synthetic 3D CSG. Finally, we show that our approach can be extended to

3D shapes. In the 3D CSG setting we use 3D-CSG dataset as described in the Section 3.4.1.

We train a stack based 3D-CSGNETSTACK network that takes 64 × 64 × 64 × (K + 1)

voxel representation of input shape concatenated with voxel representation of stack. The

input to our 3D-CSGNET are voxelized shapes in a 64×64×64 grid. Our output is a 3D

CSG program, which can be rendered as a high-resolution polygon mesh (we emphasize

that our output is not voxels, but CSG primitives and operations that can be computed and
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rendered accurately). Figure 3.11 show pairs of input voxel grids and our output shapes from

the test split of the 3D dataset. The quantitative results are shown in the Table 3.5, where

we compare our 3D-CSGNETSTACK and 3D-CSGNET networks at different beam search

decodings with the NN method, using both the IOU and Chamfer distance metrics. Chamfer

distance is computed by sampling 5k points on ground truth and predicted surface. The

stack-based network also improves the performance over the non-stack variant. The results

indicate that our method is promising in inducing correct programs for 3D shapes, which also

has the advantage of accurately reconstructing the voxelized surfaces into high-resolution

surfaces.

3.4.3.2 Primitive detection

Successful program induction for a shape requires not only predicting correct primitives

but also correct sequences of operations to combine these primitives. Here we evaluate the

shape parser as a primitive detector (i.e., we evaluate the output primitives of our program,

not the operations themselves). This allows us to directly compare our approach with

bottom-up object detection techniques.

In particular we compare against Faster R-CNNs [182], a state-of-the-art object detector.

The Faster R-CNN is based on the VGG-M network [29] and is trained using bounding-box

and primitive annotations based on our 2D synthetic training dataset. At test time the

detector produces a set of bounding boxes with associated class scores. The models are

trained and evaluated on 640×640 pixel images. We also experimented with bottom-up

approaches for primitive detection based on Hough transform [51] and other rule-based

approaches. However, our experiments indicated that the Faster R-CNN was considerably

better.

For a fair comparison, we obtain primitive detections from CSGNET trained on the 2D

synthetic dataset only (same as the Faster R-CNN). To obtain detection scores, we sample

k programs with beam-search decoding. The primitive score is the fraction of times it
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Method Circle Square Triangle Mean Speed (im/s)
Faster R-CNN 87.4 71.0 81.8 80.1 5
CSGNET, k = 10 86.7 79.3 83.1 83.0 80
CSGNET, k = 40 88.1 80.7 84.1 84.3 20

Table 3.6: MAP of detectors on the synthetic 2D shape dataset. We also report detection
speed measured as images/second on a NVIDIA 1070 GPU.

appears across all beam programs. This is a Monte Carlo estimate of our detection score.

The accuracy can be measured through standard evaluation protocols for object detection

(similar to those in the PASCAL VOC benchmark). We report the Mean Average Precision

(MAP) for each primitive type using an overlap threshold between the predicted and the true

bounding box of 0.5 intersection-over-union. Table 3.6 compares the parser network to the

Faster R-CNN approach.

Our parser clearly outperforms the Faster R-CNN detector on the squares and triangles

category. With larger beam search, we also produce slighly better results for circle detection.

Interestingly, our parser is considerably faster than Faster R-CNN tested on the same GPU.

3.5 Limitations and Conclusion

We believe that our work represents a step towards neural generation of modeling

programs given target visual content, which we believe is ambitious and hard. We demon-

strated that the model generalizes across domains, including logos, 2D silhouettes, and 3D

CAD shapes. It also is an effective primitive detector in the context of 2D shape primitive

detection.

One might argue that the 2D images and 3D shapes considered in this work are relatively

simple in structure or geometry. However, we would like to point out that even in this

ostensibly simple application scenario (i) our method demonstrates competitive or even

better results than state-of-the-art object detectors, and most importantly (ii) the problem

of generating programs using neural networks was far from trivial to solve: based on our
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Figure 3.11: Qualitative performance of 3D-CSGNET. a) Input voxelized shape, b) Sum-
marization of the steps of the program induced by 3D-CSGNET in the form of intermediate
shapes, c) Final output created by executing induced program.
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experiments, a combination of memory-enabled networks, supervised and RL strategies,

along with beam and local exploration of the state space all seemed necessary to produce

good results.

As future work, we would like to generalize our approach to longer programs with

much larger spaces of parameters in the modeling operations and more sophisticated reward

functions balancing perceptual similarity to the input image and program length. Our

method is currently limited in its capability to generate 3D shapes, since the supported

resolution is low due to the voxel representation we use in our encoder. Sparser shape

representations [38] could help extending our network to handle more challenging 3D cases

and datasets, such as ShapeNet [27] and ABC [124]. Another limitation is that our current

control of the CSG program size is crude; it is based only on an upper bound of program size

and a zero reward for invalid programs, which often occur with larger number of program

instructions. Investigating more sophisticated complexity penalties could help promoting

right-sized programs. Other promising direction is alternate strategies for combining bottom-

up proposals and top-down approaches for parsing shapes, in particular, approaches based

on constraint satisfaction and optimization.
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CHAPTER 4

SURFACE FITTING FOR 3D POINT CLOUD

4.1 Introduction

3D point clouds can be rapidly acquired using 3D sensors or photogrammetric techniques.

However, they are rarely used in this form in design and graphics applications. Observations

from the computer-aided design and modeling literature [57, 61, 175, 194] suggest that

designers often model shapes by constructing several non-overlapping patches placed

seamlessly. The advantage of using several patches over a single continuous patch is that

a much more diverse variety of geometric features and surface topologies can be created.

The decomposition also allows easier interaction and editing. The goal of this work is

to automate the time-consuming process of converting a 3D point cloud into a piecewise

parametric surface representation as seen in Figure 6.1.

An important question is how surface patches should be represented. Patch representa-

tions in CAD and graphics are based on well-accepted geometric properties: (a) continuity

in their tangents, normals, and curvature, making patches appear smooth, (b) editability,

such that they can easily be modified based on a few intuitive degrees of freedom (DoFs),

e.g., control points or axes, and (c) flexibility, so that a wide variety of surface geometries

can be captured. Towards this goal, we propose PARSENET, a parametric surface fitting

network architecture which produces a compact, editable representation of a point cloud as

an assembly of geometric primitives, including open or closed B-spline patches.

PARSENET models a richer class of surfaces than prior work which only handles basic

geometric primitives such as planes, cuboids and cylinders [139, 169, 202, 226]. While such

primitives are continuous and editable representations, they lack the richness and flexibility
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ParseNet

Edit

Figure 4.1: PARSENET decomposes point clouds (top row) into collections of assembled
parametric surface patches including B-spline patches (bottom row). On the right, a shape is
edited using the inferred parametrization.

of spline patches which are widely used in shape design. PARSENET includes a novel neural

network (SPLINENET) to estimate an open or closed B-spline model of a point cloud patch.

It is part of a fitting module (Section 4.3.2) which can also fit other geometric primitive

types. The fitting module receives input from a decomposition module, which partitions

a point cloud into segments, after which the fitting module estimates shape parameters of

a predicted primitive type for each segment (Section 4.3.1). The entire pipeline, shown

in Figure 5.3, is fully differentiable and trained end-to-end (Section 6.3.3). An optional

geometric postprocessing step further refines the output.

Compared to purely analytical approaches, PARSENET produces decompositions that

are more consistent with high-level semantic priors, and are more robust to point den-

sity and noise. To train and test PARSENET, we leverage a recent dataset of man-made

parts [125]. Extensive evaluations show that PARSENET outperforms baselines (RANSAC

and SPFN [139]) by 14.93% and 13.13% respectively for segmenting a point cloud into

patches, and by 50%, and 47.64% relative error respectively for parametrizing each patch

for surface reconstruction (Section 4.5).

To summarize, our contributions are:

• The first proposed end-to-end differentiable approach for representing a raw 3D point

cloud as an assembly of parametric primitives including spline patches.
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• Novel decomposition and primitive fitting modules, including SPLINENET, a fully-

differentiable network to fit a cubic B-spline patch to a set of points.

• Evaluation of our framework vs prior analytical and learning-based methods.

4.2 Related Work

Our work builds upon related research on parametric surface representations and methods

for primitive fitting. We briefly review relevant work in these areas. Of course, we also

leverage extensive prior work on neural networks for general shape processing: see recent

surveys on the subject [8].

4.2.0.0.1 Parametric surfaces. A parametric surface is a (typically diffeomorphic) map-

ping from a (typically compact) subset of R2 to R3. While most of the geometric primitives

used in computer graphics (spheres, cuboids, meshes etc) can be represented parametrically,

the term most commonly refers to curved surfaces used in engineering CAD modelers,

represented as spline patches [57]. There are a variety of formulations – e.g. Bézier patches,

B-spline patches, NURBS patches – with slightly different characteristics, but they all

construct surfaces as weighted combinations of control parameters, typically the positions

of a sparse grid of points which serve as editing handles.

More specifically, a B-spline patch is a smoothly curved, bounded, parametric surface,

whose shape is defined by a sparse grid of control points C = {cp,q}. The surface point

with parameters (u, v) ∈ [umin, umax]× [vmin, vmax] and basis functions [57] bp(u), bq(v) is

given by:

s(u, v) =
P∑
p=1

Q∑
q=1

bp(u)bq(v)cp,q (4.1)

Please refer to Appendix for more details on B-spline patches.

4.2.0.0.2 Fitting geometric primitives. A variety of analytical (i.e. not learning-based)

algorithms have been devised to approximate raw 3D data as a collection of geometric

primitives: dominant themes include Hough transforms, RANSAC and clustering. The
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literature is too vast to cover here, we recommend the comprehensive survey of Kaiser et

al. [115]. In the particular case of NURBS patch fitting, early approaches were based on

user interaction or hand-tuned heuristics to extract patches from meshes or point clouds

[52, 96, 128]. In the rest of this section, we briefly review recent methods that learn how to

fit primitives to 3D data.

Several recent papers [208,215,226,269] also try to approximate 3D shapes as unions of

cuboids or ellipsoids. Paschalidou et al. [169, 170] extended this to superquadrics. Sharma

et al. [201,202] developed a neural parser that represents a test shape as a collection of basic

primitives (spheres, cubes, cylinders) combined with boolean operations. Tian et al. [224]

handled more expressive construction rules (e.g.. loops) and a wider set of primitives.

Because of the choice of simple primitives, such models are naturally limited in how well

they align to complex input objects, and offer less flexible and intuitive parametrization for

user edits.

More relevantly to our goal of modeling arbitrary curved surfaces, Gao et al. [68]

parametrize 3D point clouds as extrusions or surfaces of revolution, generated by B-spline

cross-sections detected by a 2D network. This method requires translational/rotational

symmetry, and does not apply to general curved patches. Li et al. [139] proposed a

supervised method to fit primitives to 3D point clouds, first predicting per-point segment

labels, primitive types and normals, and then using a differential module to estimate primitive

parameters. While we also chain segmentation with fitting in an end-to-end way, we differ

from Li et al. in two important ways. First, our differentiable metric-learning segmentation

produces improved results (Table 4.1). Second, a major goal (and technical challenge) for

us is to significantly improve expressivity and generality by incorporating B-spline patches:

we achieve this with a novel differentiable spline-fitting network. In a complementary

direction, Yumer et al. [258] developed a neural network for fitting a single NURBS patch

to an unstructured point cloud. While the goal is similar to our spline-fitting network, it

is not combined with a decomposition module that jointly learns how to express a shape

51



Cone
Fitting

Cylinder
Fitting

Points [+ Normals]

Graph Layer FC Layer

Fitting

Decomposition Module Fitting Module

Post Process
Optimization

B-Spline Cylinder Cone

N x 128

Predicted Segments

Mean-
Shift

Clustering

SplineNet
Point Primitive

Type

Post Process Optimization

N x 6
Skip

Connections

Point
Embedding

Input

Decomposition

Figure 4.2: Overview of PARSENET pipeline. (1) The decomposition module (Section
4.3.1) takes a 3D point cloud (with optional normals) and decomposes it into segments
labeled by primitive type. (2) The fitting module (Section 4.3.2) predicts parameters of
a primitive that best approximates each segment. It includes a novel SPLINENET to fit
B-spline patches. The two modules are jointly trained end-to-end. An optional postprocess
module (Section 4.3.3) refines the output.

with multiple patches covering different regions. Further, their fitting module has several

non-trainable steps which are not obviously differentiable, and hence cannot be used in our

pipeline.

4.3 Method

The goal of our method is to reconstruct an input point cloud by predicting a set of

parametric patches closely approximating its underlying surface. The first stage of our

architecture is a neural decomposition module (Fig. 5.3) whose goal is to segment the input

point cloud into regions, each labeled with a parametric patch type. Next, we incorporate a

fitting module (Fig. 5.3) that predicts each patch’s shape parameters. Finally, an optional post-

processing geometric optimization step refines the patches to better align their boundaries

for a seamless surface.
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The input to our pipeline is a set of points P = {pi}Ni=1, represented either as 3D

positions pi = (x, y, z), or as 6D position + normal vectors pi = (x, y, z, nx, ny, nz). The

output is a set of surface patches {sk}, reconstructing the input point cloud. The number of

patches is automatically determined. Each patch is labeled with a type tk, one of: sphere,

plane, cone, cylinder, open/closed B-spline patch. The architecture also outputs a real-valued

vector for each patch defining its geometric parameters, e.g. center and radius for spheres,

or B-spline control points and knots.

4.3.1 Decomposition module

The first module (Fig. 5.3) decomposes the point cloud P into a set of segments such

that each segment can be reliably approximated by one of the abovementioned surface patch

types. To this end, the module first embeds the input points into a representation space used

to reveal such segments. As discussed in Section 6.3.3, the representations are learned using

metric learning, such that points belonging to the same patch are embedded close to each

other, forming a distinct cluster.

4.3.1.0.1 Embedding network. To learn these point-wise representations, we incorporate

edge convolution layers (EdgeConv) from DGCNN [239]. Each EdgeConv layer performs a

graph convolution to extract a representation of each point with an MLP on the input features

of its neighborhood. The neighborhoods are dynamically defined via nearest neighbors in

the input feature space. We stack 3 EdgeConv layers, each extracting a 256-D representation

per point. A max-pooling layer is also used to extract a global 1024-D representation

for the whole point cloud. The global representation is tiled and concatenated with the

representations from all three EdgeConv layers to form intermediate point-wise (1024+256)-

D representations Q = {qi} encoding both local and global shape information. We found

that a global representation is useful for our task, since it captures the overall geometric

shape structure, which is often correlated with the number and type of expected patches.

This representation is then transformed through fully connected layers and ReLUs, and
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finally normalized to unit length to form the point-wise embedding Y = {yi}Ni=1 (128-D)

lying on the unit hypersphere.

4.3.1.0.2 Clustering. A mean-shift clustering procedure is applied on the point-wise em-

bedding to discover segments. The advantage of mean-shift clustering over other alternatives

(e.g., k-means or mixture models) is that it does not require the target number of clusters as

input. Since different shapes may comprise different numbers of patches, we let mean-shift

produce a cluster count tailored for each input. Like the pixel grouping of [126], we imple-

ment mean-shift iterations as differentiable recurrent functions, allowing back-propagation.

Specifically, we initialize mean-shift by setting all points as seeds z
(0)
i = yi,∀yi ∈ R128.

Then, each mean-shift iteration t updates each point’s embedding on the unit hypersphere:

z
(t+1)
i =

N∑
j=1

yjg(z
(t)
i ,yj)/(

N∑
j=1

g(z
(t)
i ,yj)) (4.2)

where the pairwise similarities g(z
(t)
i ,yj) are based on a von Mises-Fisher kernel with band-

width β: g(zi,yj) = exp(zTi yj/β
2) (iteration index dropped for clarity). The embeddings

are normalized to unit vectors after each iteration. The bandwidth for each input point cloud

is set as the average distance of each point to its 150th neighboring point in the embedding

space [206]. The mean-shift iterations are repeated until convergence (this occurs around 50

iterations in our datasets). We extract the cluster centers using non-maximum suppression:

starting with the point with highest density, we remove all points within a distance β, then

repeat. Points are assigned to segments based on their nearest cluster center. The point

memberships are stored in a matrix W, where W[i, k] = 1 means point i belongs to segment

k, and 0 means otherwise. The memberships are passed to the fitting module to determine a

parametric patch per segment. During training, we use soft memberships for differentiating

this step (more details in Section 4.4.3).

4.3.1.0.3 Segment Classification. To classify each segment, we pass the per-point repre-

sentation qi, encoding local and global geometry, through fully connected layers and ReLUs,
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followed by a softmax for a per-point probability P (ti = l), where l is a patch type (i.e.,

sphere, plane, cone, cylinder, open/closed B-spline patch). The segment’s patch type is

determined through majority voting over all its points.

4.3.2 Fitting module

The second module (Fig. 5.3) aims to fit a parametric patch to each predicted segment

of the point cloud. To this end, depending on the segment type, the module estimates the

shape parameters of the surface patch.

4.3.2.0.1 Basic primitives. Following Li et al. [139], we estimate the shape of basic

primitives with least-squares fitting. This includes center and radius for spheres; normal and

offset for planes; center, direction and radius for cylinders; and apex, direction and angle for

cones. We also follow their approach to define primitive boundaries.

4.3.2.0.2 B-Splines. Analytically parametrizing a set of points as a spline patch in the

presence of noise, sparsity and non-uniform sampling, can be error-prone. Instead, predicting

control points directly with a neural network can provide robust results. We propose a neural

network SPLINENET, that inputs points of a segment, and outputs a fixed size control-point

grid. A stack of three EdgeConv layers produce point-wise representations concatenated

with a global representation extracted from a max-pooling layer (as for decomposition, but

weights are not shared). This equips each point i in a segment with a 1024-D representation

φi. A segment’s representation is produced by max-pooling over its points, as identified

through the membership matrix W extracted previously:

φk = max
i=1...N

(W[i, k] · φi). (4.3)

Finally, two fully-connected layers with ReLUs transform φk to an initial set of 20 × 20

control points C unrolled into a 1200-D output vector. For a segment with a small number

of points, we upsample the input segment (with nearest neighbor interpolation) to 1600
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points. This significantly improved performance for such segments (Table 4.2). For closed

B-spline patches, we wrap the first row/column of control points. Note that the network

parameters to produce open and closed B-splines are not shared. Fig. 4.5 visualizes some

predicted B-spline surfaces.

4.3.3 Post-processing module

SPLINENET produces an initial patch surface that approximates the points belonging to

a segment. However, patches might not entirely cover the input point cloud, and boundaries

between patches are not necessarily well-aligned. Further, the resolution of the initial control

point grid (20× 20) can be further adjusted to match the desired surface resolution. As a

post-processing step, we perform an optimization to produce B-spline surfaces that better

cover the input point cloud, and refine the control points to achieve a prescribed fitting

tolerance.

4.3.3.0.1 Optimization. We first create a grid of 40×40 points on the initial B-spline patch

by uniformly sampling its UV parameter space. We tessellate them into quads. Then we

perform a maximal matching between the quad vertices and the input points of the segment,

using the Hungarian algorithm with L2 distance costs. We then perform an as-rigid-as-

possible (ARAP) [209] deformation of the tessellated surface towards the matched input

points. ARAP is an iterative, detail-preserving method to deform a mesh so that selected

vertices (pivots) achieve targets position, while promoting locally rigid transformations in

one-ring neighborhoods (instead of arbitrary ones causing shearing/stretching). We use the

boundary vertices of the patch as pivots so that they move close to their matched input points.

Thus, we promote coverage of input points by the B-spline patches. After the deformation,

the control points are re-estimated with least-squares [175].

4.3.3.0.2 Refinement of B-spline control points. After the above optimization, we again

perform a maximal matching between the quad vertices and the input points of the segment.

As a result, the input segment points acquire 2D parameter values in the patch’s UV
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parameter space, which can be used to re-fit any other grid of control points [175]. In our

case, we iteratively upsample the control point grid by a factor of 2 until a fitting tolerance,

measured via Chamfer distance, is achieved. If the tolerance is satisfied by the initial control

point grid, we can similarly downsample it iteratively. In our experiments, we set the fitting

tolerance to 5 × 10−4. In Fig. 4.5 we show the improvements from the post-processing

step.

4.4 Training

To train the neural decomposition and fitting modules of our architecture, we use

supervisory signals from a dataset of 3D shapes modeled through a combination of basic

geometric primitives and B-splines. Below we describe the dataset, then we discuss the loss

functions and the steps of our training procedure.

4.4.1 Dataset

The ABC dataset [125] provides a large source of 3D CAD models of mechanical

objects whose file format stores surface patches and modeling operations that designers

used to create them. Since our method is focused on predicting surface patches, and in

particular B-spline patches, we selected models from this dataset that contain at least one

B-spline surface patch. As a result, we ended up with a dataset of 32K models (24K, 4K, 4K

train, test, validation sets respectively). We call this ABCPARTSDATASET. All shapes are

centered in the origin and scaled so they lie inside unit cube. To train SPLINENET, we also

extract 32K closed and open B-spline surface patches each from ABC dataset and split them

into 24K, 4K, 4K train, test, validation sets respectively. We call this SPLINEDATASET. We

report the average number of different patch types in the Appendix.

4.4.1.0.1 Preprocessing. Based on the provided metadata in ABCPARTSDATASET, each

shape can be rendered based on the collection of surface patches and primitives it contains

(Figure 4.4). Since we assume that the inputs to our architecture are point clouds, we
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Figure 4.3: Standardization: Examples of B-spline patches with a variable number of
control points (shown in red), each standardized with 20× 20 control points. Left: closed
B-spline and Right: open B-spline. (Please zoom in.)

first sample each shape with 10K points randomly distributed on the shape surface. We

also add noise in a uniform range [−0.01, 0.01] along the normal direction. Normals are

also perturbed with random noise in a uniform range of [−3, 3] degrees from their original

direction.

4.4.2 Loss functions

We now describe the different loss functions used to train our neural modules. The

training procedure involving their combination is discussed in Section 4.4.3.

4.4.2.0.1 Embedding loss. To discover clusters of points that correspond well to surface

patches, we use a metric learning approach. The point-wise representations Z produced

by our decomposition module after mean-shift clustering are learned such that point pairs

originating from the same surface patch are embedded close to each other to favor a cluster

formation. In contrast, point pairs originating from different surface patches are pushed

away from each other. Given a triplet of points (a, b, c), we use the triplet loss to learn the

embeddings: c where τ the margin is set to 0.9. Given a triplet set TS sampled from each

point set S from our dataset D, the embedding objective sums the loss over triplets:

Lemb =
∑
S∈D

1

|TS |
∑

(a,b,c)∈TS

`emb(a, b, c). (4.4)

4.4.2.0.2 Segment classification loss. To promote correct segment classifications accord-

ing to our supported types, we use the cross entropy loss: Lclass = −
∑

i∈S log(pti) where pit
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is the probability of the ith point of shape S belonging to its ground truth type t, computed

from our segment classification network.

4.4.2.0.3 Control point regression loss. This loss function is used to train SPLINENET.

As discussed in Section 4.3.2, SPLINENET produces 20× 20 control points per B-spline

patch. We include a supervisory signal for this control point grid prediction. One issue

is that B-spline patches have a variable number of control points in our dataset. Hence

we reparametrize each patch by first sampling M = 3600 points and estimating a new

20× 20 reparametrization using least-squares fitting [128,175], as seen in the Figure 4.3. In

our experiments, we found that this standardization produces no practical loss in surface

reconstructions in our dataset. Finally, our reconstruction loss should be invariant to flips or

swaps of control points grid in u and v directions. Hence we define a loss that is invariant to

such permutations:

Lcp =
∑
S∈D

1

|S(b)|
∑

sk∈S(b)

1

|Ck|
min
π∈Π
||Ck − π(Ĉk)||2 (4.5)

where S(b) is the set of B-spline patches from shape S , Ck is the predicted control point grid

for patch sk (|Ck| = 400 control points), π(Ĉk) is permutations of the ground-truth control

points from the set Π of 8 permutations for open and 160 permutations for closed B-spline.

4.4.2.0.4 Laplacian loss. This loss is also specific to B-Splines using SPLINENET. For

each ground-truth B-spline patch, we uniformly sample ground truth surface, and measure

the surface Laplacian capturing its second-order derivatives. We also uniformly sample the

predicted patches and measure their Laplacians. We then establish Hungarian matching

between sampled points in the ground-truth and predicted patches, and compare the Lapla-

cians of the ground-truth points r̂m and corresponding predicted ones rn to improve the

agreement between their derivatives as follows:

Llap =
∑
S∈D

1

|S(b)| ·M
∑

sk∈S(b)

∑
rn∈sk

||L(rn)− L(r̂m)||2 (4.6)
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where L(·) is the Laplace operator on patch points, and M = 1600 point samples.

4.4.2.0.5 Patch distance loss. This loss is applied to both basic primitive and B-splines

patches. Inspired by [139], the loss measures average distances between predicted primitive

patch sk and uniformly sampled points from the ground truth patch as:

Ldist =
∑
S∈D

1

KS

KS∑
k=1

1

Mŝk

∑
n∈ŝk

D2(rn, sk), (4.7)

where KS is the number of predicted patches for shape S , Mŝk is number of sampled points

rn from ground patch ŝk,D2(rn, sk) is the squared distance from rn to the predicted primitive

patch surface sk. These distances can be computed analytically for basic primitives [139].

For B-splines, we use an approximation based on Chamfer distance between sample points.

4.4.3 Training procedure

One possibility for training is to start it from scratch using a combination of all losses.

Based on our experiments, we found that breaking the training procedure into the following

steps leads to faster convergence and to better minima:

• We first pre-train the networks of the decomposition module using ABCPARTS-

DATASET with the sum of embedding and classification losses: Lemb + Lclass. Both

losses are necessary for point cloud decomposition and classification.

• We then pre-train the SPLINENET using SPLINEDATASET for control point prediction

exclusively on B-spline patches using Lcp+Llap+Ldist. We note that we experimented

training the B-spline patch prediction only with the patch distance loss Ldist but had

worse performance. Using both the Lcp and Llap loss yielded better predictions as

shown in Table 4.2.

• We then jointly train the decomposition and fitting module end-to-end with all the

losses. To allow backpropagation from the primitives and B-splines fitting to the
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Method Input seg iou label iou res (all) res (geom) res (spline) P cover
NN p 54.10 61.10 - - - -
RANSAC p+n 67.21 - 0.0220 0.0220 - 83.40

SPFN p 47.38 68.92 0.0238 0.0270 0.0100 86.66

SPFN p+n 69.01 79.94 0.0212 0.0240 0.0136 88.40

PARSENET p 71.32 79.61 0.0150 0.0160 0.0090 87.00

PARSENET p+n 81.20 87.50 0.0120 0.0123 0.0077 92.00

PARSENET + e2e p+n 82.14 88.60 0.0118 0.0120 0.0076 92.30

PARSENET + e2e + opt p+n 82.14 88.60 0.0111 0.0120 0.0068 92.97

Table 4.1: Primitive fitting on ABCPARTSDATASET. We compare PARSENET with
nearest neighbor (NN), RANSAC [193], and SPFN [139]. We show results with points (p)
and points and normals (p+n) as input. The last two rows shows our method with end-to-
end training and post-process optimization. We report ‘seg iou’ and ‘label iou’ metric for
segmentation task. We report the residual error (res) on all, geometric and spline primitives,
and the coverage metric for fitting.

embedding network, the mean shift clustering is implemented as a recurrent module.

For efficiency, we use 5 mean-shift iterations during training. It is also important to

note that during training, we use soft point-to-segment memberships, which enables

backpropagation from the fitting module to the decomposition module and improves

reconstructions. The soft memberships are computed based on the point embeddings

{zi} (after the mean-shift iterations) and cluster center embedding {zk} as follows:

W[i, k] =
exp(zTk zi/β

2)∑
k′ exp(zTk′zi)/β

2)
(4.8)

Please see the Appendix for more implementation details.

4.5 Experiments

Our experiments compare our approach to alternatives in three parts: (a) evaluation of

the quality of segmentation and segment classification (Section 4.5.1), (b) evaluation of

B-spline patch fitting, since it is a major contribution of our work (Section 4.5.2), and (c)
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evaluation of overall reconstruction quality (Section 4.5.3). We include evaluation metrics

and results for each of the three parts next.

4.5.1 Segmentation and labeling evaluation

4.5.1.0.1 Evaluation metrics. We use the following metrics for evaluating the point cloud

segmentation and segment labeling based on the test set of ABCPARTSDATASET:

• Segmentation mean IOU (“seg mIOU”): this metric measures the similarity of the

predicted segments with ground truth segments. Given the ground-truth point-to-

segment memberships Ŵ for an input point cloud, and the predicted ones W, we

measure:

1
K

∑K
k=1 IOU(Ŵ[:, k], h(W[:, k]))

where h represents a membership conversion into a one-hot vector, and K is the

number of ground-truth segments.

• Segment labeling IOU (“label mIOU”): this metric measures the classification accu-

racy of primitive type prediction averaged over segments:

1
K

∑K
k=1 I

[
tk = t̂k

]
where tk and t̂k is the predicted and ground truth primitive type

respectively for kth segment and I is an indicator function.

We use Hungarian matching to find correspondences between predicted segments and

ground-truth segments.

4.5.1.0.2 Comparisons. We first compare our method with a nearest neighbor (NN)

baseline: for each test shape, we find its most similar shape from the training set using

Chamfer distance. Then for each point on the test shape, we transfer the labels and primitive

type from its closest point inR3 on the retrieved shape.

We also compare against efficient RANSAC algorithm [193]. The algorithm only handles

basic primitives (cylinder, cone, plane, sphere, and torus), and offers poor reconstruction of

B-splines patches in our dataset. Efficient RANSAC requires per point normals, which we
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Figure 4.4: Given the input point clouds with normals of the first row, we show surfaces
produced by SPFN [139] (second row), PARSENET without post-processing optimization
(third row), and full PARSENET including optimization (fourth row). The last row shows
the ground-truth surfaces from our ABCPARTSDATASET.

provide as the ground-truth normals. We run RANSAC 3 times and report the performance

with best coverage.

We then compare against the supervised primitive fitting (SPFN) approach [139]. Their

approach produces per point segment membership, and their network is trained to maximize

relaxed IOU between predicted membership and ground truth membership, whereas our

approach uses learned point embeddings and clustering with mean-shift clustering to extract

segments. We train SPFN network using their provided code on our training set using their

proposed losses. We note that we include B-splines patches in their supported types. We

train their network in two input settings: (a) the network takes only point positions as input,

(b) it takes point and normals as input. We train our PARSENET on our training set in the

same two settings using our loss functions.
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Loss Open splines Closed splines
cp dist lap opt w/ ups w/o ups w/ ups w/o ups
X 2.04 2.00 5.04 3.93

X X 1.96 2.00 4.9 3.60

X X X 1.68 1.59 3.74 3.29

X X X X 0.92 0.87 0.63 0.81

Table 4.2: Ablation study for B-spline fitting. The error is measured using Chamfer
Distance (CD is scaled by 100). The acronyms “cp”: control-points regression loss, “dist”
means patch distance loss, and “lap” means Laplacian loss. We also include the effect of
post-processing optimization “opt”. We report performance with and without upsampling
(“ups”) for open and closed B-splines.

The performance of the above methods are shown in Table 4.1. The lack of B-spline

fitting hampers the performance of RANSAC. The SPFN method with points and normals as

input performs better compared to using only points as input. Finally, PARSENET with only

points as input performs better than all other alternatives. We observe further gains when

including point normals in the input. Training PARSENET end-to-end gives 13.13% and

8.66% improvement in segmentation mIOU and label mIOU respectively over SPFN with

points and normals as input. The better performance is also reflected in Figure 4.4, where our

method reconstructs patches that correspond to more reasonable segmentations compared to

other methods. In the Appendix we evaluate methods on the TraceParts dataset [139], which

contains only basic primitives (cylinder, cone, plane, sphere, torus). We outperform prior

work also in this dataset.

4.5.2 B-Spline fitting evaluation

4.5.2.0.1 Evaluation metrics. We evaluate the quality of our predicted B-spline patches

by computing the Chamfer distance between densely sampled points on the ground-truth

B-spline patches and densely sampled points on predicted patches. Points are uniformly

sampled based on the 2D parameter space of the patches. We use 2K samples. We use the

test set of our SPLINEDATASET for evaluation.
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Figure 4.5: Qualitative evaluation of B-spline fitting. From top to bottom: input point
cloud, reconstructed surface by SPLINENET, reconstructed surface by SPLINENET with post-
processing optimization, reconstruction by SPLINENET with control point grid adjustment
and finally ground truth surface. Effect of post process optimization is highlighted in red
boxes.

4.5.2.0.2 Ablation study. We evaluate the training of SPLINENET using various loss

functions while giving 700 points per patch as input, in Table 4.2. All losses contribute

to improvements in performance. Table 4.2 shows that upsampling is effective for closed

splines. Figure 4.5 shows the effect of optimization to improve the alignment of patches and

the adjustment of resolution in the control point grid. See Appendix for more experiments

on SPLINENET’s robustness.

4.5.3 Reconstruction evaluation

4.5.3.0.1 Evaluation metrics. Given a point cloud P = {pi}Ni=1, ground-truth patches

{∪Kk=1ŝk} and predicted patches {∪Kk=1sk} for a test shape in ABCPARTSDATASET, we

evaluate the patch-based surface reconstruction using the following:

• Residual error (“res”) measures the average distance of input points from the pre-

dicted primitives following [139]: Ldist =
∑K

k=1
1
Mk

∑
n∈ŝk

D(rn, sk) where K is
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the number of segments, Mk is number of sampled points rn from ground patch ŝk,

D(rn, sk) is the distance of rn from predicted primitive patch sk.

• P-coverage (“P-cover”) measures the coverage of predicted surface by the input

surface also following [139]: 1
N

∑N
i=1 I

[
minKk=1 D(pi, sk) < ε

]
(ε = 0.01).

We note that we use the matched segments after applying Hungarian matching algorithm,

as in Section 4.5.1, to compute these metrics.

4.5.3.0.2 Comparisons. We report the performance of RANSAC for geometric primitive

fitting tasks. Note that RANSAC produces a set of geometric primitives, along with their

primitive type and parameters, which we use to compute the above metrics. Here we

compare with the SPFN network [139] trained on our dataset using their proposed loss

functions. We augment their per point primitive type prediction to also include open/closed

B-spline type. Then for classified segments as B-splines, we use our SPLINENET to fit

B-splines. For segments classified as geometric primitives, we use their geometric primitive

fitting algorithm.

4.5.3.0.3 Results. Table 4.1 reports the performance of our method, SPFN and RANSAC.

The residual error and P-coverage follows the trend of segmentation metrics. Interestingly,

our method outperforms SPFN even for geometric primitive predictions (even without

considering B-splines and our adaptation). Using points and normals, along with joint

end-to-end training, and post-processing optimization offers the best performance for our

method by giving 47.64% and 50% reduction in relative error in comparison to SPFN and

RANSAC respectively.

4.6 Conclusion

We presented a method to reconstruct point clouds by predicting geometric primitives

and surface patches common in CAD design. Our method effectively marries 3D deep

learning with CAD modeling practices. Our architecture predictions are editable and
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interpretable. Modelers can refine our results based on standard CAD modeling operations.

In terms of limitations, our method often makes mistakes for small parts, mainly because

clustering merges them with bigger patches. In high-curvature areas, due to sparse sampling,

PARSENET may produce more segments than ground-truth. Producing seamless boundaries

is still a challenge due to noise and sparsity in our point sets. Generating training point

clouds simulating realistic scan noise is another important future direction.
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CHAPTER 5

LEARNING POINT EMBEDDING FROM SHAPE REPOSITORIES
FOR FEW SHOT SEMANTIC SEGMENTATION

5.1 Introduction

Point Embedding
Network

Point Embeddings Training Examples

"right leg"

"vintage seat"

"airplane fan"

Shape Collection from
 3D Warehouse 

Point Segmentation
Network

Figure 5.1: Overview of our approach. Shape collections in 3D shape repositories contain
metadata such as polygon groupings and tags assigned to parts. These parts and tags assigned
to them are highly variable, even within the same category. We use the shapes and metadata
to train a point embedding network that maps each point into a fixed dimensional vector (see
Section 7.3 and Figure 5.3 for details.) The embeddings for a few shapes are visualized as
color channels using t-SNE mapping, where similar colors indicate correspondence across
shapes. The learned parameters when used to initialize a point segmentation network leads
to improved performance when few training examples are available. (Please zoom in for
details.)

Online repositories of user-generated 3D shapes, such as the 3D Warehouse reposi-

tory [6], contain rich metadata associated with each shape. These include information about

geometric primitives (e.g., polygons in 3D meshes) organized in groups, often arranged in a

hierarchy, as well as color, material and tags assigned to them. This information reflects the

modeling decisions of the designer are likely correlated with high-level semantics.

Despite its abundance, the use of metadata for learning shape representations has been

relatively unexplored in the literature. One barrier is the high degree of its variability. These

models were created by designers with a diverse goals and expertise. As a result the groups
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and hierarchies over parts of a shape that reflect the modeling steps taken by the designer

are highly variable: two similar shapes can have significantly different number of parts as

well as the number of levels in the part hierarchy. Moreover, the tags are rarely assigned to

parts and are often arbitrarily named. Figures 7.1 and 5.2 illustrate this variability.

Our work systematically addresses these challenges and presents an approach to exploit

the information present in the metadata to improve the performance of a state-of-the-art

3D semantic segmentation model. Our approach, illustrated in Figure 7.1, consists of a

deep network that maps each point in a 3D shape to a fixed dimensional embedding. The

network is trained in a way such that the embedding reflects the user-provided hierarchy

and tags. We propose a robust tree-aware metric to supervise the point embedding network

that offers better generalization to semantic segmentation tasks over a baseline scheme that

is tree-agnostic (only considers the leaf-level groupings). The point embedding network

trained on hierarchies also improves over models trained on shape reconstruction tasks that

leverage the 3D shape geometry but not their metadata. Finally, when tags are available we

show that the embeddings can be fine-tuned leading to further improvements in performance.

On the ShapeNet semantic segmentation dataset, an embedding network pre-trained on

hierarchy metadata outperforms a network trained from scratch by reducing relative error by

10.2% across 16 categories, when trained on 8 shapes per category. Similarly, when only

a small fraction of points (20 points) per shape are labeled, the relative reduction in error

is 4.9%. Furthermore, on 5 categories which have sufficient tags, using both the hierarchy

and tags reduces error further by 12.8% points relative to the randomly initialized network,

when trained on 8 shapes per category. Our visualizations indicate that the trained networks

implicitly learn correspondences across shapes.
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Increasing Depth

Figure 5.2: (Top row) Example shapes from our dataset. Our dataset consist of shapes
segmented into parts without any semantic information. Notice that shapes of same category
can be segmented differently from each other. Here different color represents different
leaf node in the part-hierarchy. (Bottom left) Parts at different depths of the hierarchy
for an airplane and a car. Increasing the depth increases the number and granularity of
parts. (Bottom right) A word cloud of raw tags collected from our dataset. The font size is
proportional to the square root of frequency of the dataset.

5.2 Related Work

Our work builds on the advances in deep learning architectures for point-based, or local,

shape representations and metric learning approaches to guide representation learning. We

briefly review relevant work in these areas.

5.2.0.0.1 Supervised learning of local shape descriptors. Several architectures have been

proposed to output local representations, or descriptors, for 3D shape points or patches. The

architectures can be broadly categorized according to the type of raw 3D shape representation

they consume. Volumetric methods learn local patch representations by processing voxel

neighborhoods either in uniform [153] or adaptively subdivided grids [121, 184, 233, 234].

View or multi-view approaches learning local image-based representations by processing

local 2D shape projections [101, 219], which can be mapped back onto the 3D shape [117].

Finally, a large number of architectures have been recently proposed for processing raw

point clouds. PointNet and PointNet++ are transforming individual point coordinates
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and optionally normals through MLPs and then performing permutation-invariant pooling

operations in local neighborhhoods [178, 179].

All the above-mentioned deep architectures are trained in a fully supervised manner using

significant amound of labeled data. Although for some specific classes, like human bodies,

these annotations can be easily obtained through template-based matching or synthetically

generated shapes [10,13,21], for the vast majorities of shapes in online repositories, gathering

such annotations often requires laborious user interaction [158, 254]. Active learning

methods have also been proposed to decrease the workload, but still rely on expensive

crowdsourcing [254].

5.2.0.0.2 Weak supervision for learning shape descriptors. A few methods [161, 267]

have been recently proposed to avoid expensive point-based annotations. Muralikrishnan et

al. [161] extracts point-wise representations by training an architecture designed to predict

shape-level tags (e.g., armrest chair) by first predicting intermediate shape segmentations.

Instead of using weak supervision in the form of shape-level tags, we use unlabeled part

hierarchies available in massive online repositories and tags for parts (not whole shapes)

when such are available. Yi et al. [253] embeds pre-segmented parts in descriptor space

by jointly learning a metric for clustering parts, assigning tags to them, and building a

consistent part hierarchy. In our case, our architecture learns point-wise descriptors and also

relaxes the requirement of inferring consistent hierarchies, which might be hard to estimate

for shape families with significant structural variability. Non-rigid geometric alignment has

been used as a form of weak and noisy supervision by extracting approximate local shape

correspondences between pairs of shapes of similar structure [107] or by deforming part

templates [102]. However, global shape alignment can fail for shapes with different structure,

while part-based alignment requires corresponding parts or definition of part templates in the

first place. In a concurrent work, given a collection of shapes from a single category, Chen

et al. [35] proposed a branched autoencoder that discovers coarse segmentations of shapes

by predicting implicit fields for each part. Their network is trained with a few manually
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selected labeled shapes in a few-shot semantic segmentation setting. Our method instead

utilizes part hierarchies and metadata as weak supervisory signal. We also randomly select

labeled sets for our few-shot experiments. In general, our method is complementary to all the

above-mentioned weak supervision methods. Our weak signal in the form of unlabeled part

hierarchies and part tags can be used in conjunction with geometric alignment, consistent

hierarchies, or shape-level tags, whenever such are possible to obtain.

5.2.0.0.3 Triplet-based metric learning. Our approach learns a metric embedding over

points that reflects the hierarchies in 3D shape collections. Metric learning has a rich

literature with a diverse applications and techniques. A popular approach is to supervise the

learning with “triplets” of the form (a, b, c) to denote that “a is more similar to b than c”.

This can be written as d(a, b) ≤ d(a, c) where the d(a, b) denotes the distance between a

and b. The distance itself could be computed as the Euclidean distance in some embedding

space, i.e., d(a, b) = ||φ(a)− φ(b)||2, possibly computed with a deep network. Within this

framework, techniques to sample triplets remains an active area of research. These include

techniques such as hard-negative mining [91], semi-hard negative mining [195] and distance

weighted sampling [247] to bias the sampling of triplets.

5.3 Mining Metadata from Shape Repositories

We first describe the source of our part hierarchy dataset that we use for training our

embedding network. Then we describe the metadata (tags) present in the 3d models and

how we extract this information into a consistent dataset.

5.3.0.0.1 Part hierarchies. Several 3D modeling tools, such as SketchUp, Maya, 3DS

Max to name a few, allow users to model shapes, and scenes, in general, as a collection

of geometric entities (e.g., polygons) organized into groups. The groups can be nested

and organized in hierarchies. In our part hierarchy dataset, we endeavor to extract these

hieararchies. The shapes in our dataset are a subset of Shapenet Core dataset, where we
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Category Shapes with part tagged Avg points tagged
Motorcycle 110 11.3%

Airplane 806 5.0%
Table 392 45.7%
Chair 326 38.7%
Car 600 20.0%

Table 5.1: Dataset with tags. Number of shapes with at least one tagged parts, and average
percentage of points tagged in these shapes in 5 categories.

focus on 16 categories from Shapenet part-segmentation dataset [254] to allow systematic

benchmarking and comparison with prior work. Note that the 16 categories semantic

segmentation dataset contains 16.6k shapes, whereas 16 categories in Shapenet Core dataset

contains 28k shapes. We first retrieved the original files for shapes in Shapenet Core dataset

provided by 3d warehouse, which are stored in the popular “COLLADA” format [243].

These files represent 3D models in a hierarchical tree structure. Leaf nodes represent shape

geometry, and internal nodes represent groups of geometric primitives, or nested groups.

Samples from our dataset are visualized in the Figure 5.2. Number of parts in which a

shape is segmented depends on the part-hierarchy as visualized in the Figure 5.2 (bottom

left). Models with too few part segmentation (less than 2) or too many (more than 500) are

discarded. This gives us a total of 20776 3D models having part group information, with

each model having at least one level of part grouping. We further segment the dataset into

train (15625), validation (3113) and test (2038) splits. We ensure that the shapes in test split

of semantic part-segmentation dataset [254] are not included in the train split of our part

hierarchy dataset.

5.3.0.0.2 Tag extraction. Modeling tools allow users to explicitly give tags to parts, which

are stored in their corresponding file format. Obviously, not all designers enter tags for their

designed parts. Out of all the models that include part group information in our dataset, we

observed that only 10.7% of the shapes had meaningful tags for at least one part (i.e., tags

are sparse). Usually, these tags are not consistent, e.g., a tag for a wheel part in a car can be
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“wheel mesh”. To make things worse, few tags have high frequency e.g., one may encounter

wheel, chassis, windows (or synthetics of those) frequently as tags, while most of them are

rare, or even be non-informative for part types e.g., “geometry123”.

To extract meaningful tags, we selected the 10 most frequent tags encountered as strings,

or sub-strings stored in the nodes for each shape category. We also merge synonyms into

one tag to reduce number of tags in the final set. For every tag, we find the corresponding

geometry nodes and then we label the points sampled from these nodes with the tag. We

found that only 5 out of 16 categories have a “sufficient” number of tagged points (> 1%

of the original surface points). By “sufficient”, we mean that below this threshold, tags are

becoming so sparse in a category that result in negligible improvements. Table 5.1 shows

the distribution of tags in these 5 categories.

5.3.0.0.3 Geometric postprocessing. We finally aligned the shapes using ICP so that their

orientation agrees with the canonical orientation provided for the same shapes in ShapeNet.

To process the shapes through our point-based architecture, we uniformly sampled 10K

points on their surface. Further details about these steps are provided in the Appendix.

5.4 Method

N x 3 N x 64

1 x 1024

N x 1088Input Point Cloud

Wing

Landing Gear

Fuselage

Cockpit

Embedding Hierarchy + Tags

Training
signal

Figure 5.3: Architecture of the Point Embedding Network (PEN). The network takes as
input a point cloud and outputs a fixed dimensional embedding for each point, visualized
here using t-SNE. These embeddings are learned using metric learning that utilizes part-
hierarchy. Furthermore, embedding can be improved by supervising network using sparsely
tagged point cloud from a small subset of our dataset (refer Table 5.1). Tags are pointed by
arrows.

74



Our Point Embedding Network (PEN) takes as input a shape in the form of a point

cloud set, X = {xi}Ni=1, where x represents the 3D coordinates of each point. Our network

learns to map each input shape point x to an embedding φw(x) ∈ Rd based on learned

network parameters w. The architecture is illustrated in Figure 5.3. PEN first incorporates

a PointNet module [178]: the points in the input shape are individually encoded into

vectorial representations through MLPs, then the resulting point-wise representations are

aggregated through max pooling to form a global shape representation. The representation

is invariant to the order of the points in the input point set. At the next stage, the learned

point-wise representations are concatenated with the global shape representation, and are

further transformed through fully-connected layers and ReLUs. In this manner, the point

embeddings reflect both local and global shape information.

We used PointNet as a module to extract the initial point-wise and global shape rep-

resentation mainly due to its efficiency. In general, other point-based modules, or even

volumetric [153,184,233] and view-based modules [101,212] for local and global shape pro-

cessing could be adapted in a similar manner within our architecture. Below we describe the

main focus of our work to learn the parameters of the architecture based on part hierarchies

and tag data.

5.4.0.0.1 Learning from part hierarchies. Our training takes a standard metric learning

approach where the parameters of the PEN are optimized such that pairs originating from

the same part sampled from the hierarchy (positive pairs) have distance smaller than pairs of

points originating from different parts (negative pairs) in the embedded space. Specifically,

given a triplet of points (a, b, c), the loss of the network over this triplet [93] is defined as:

`(a, b, c) =
[
d(a, b)− d(a, c) +m

]
+
, (5.1)

where d(a, b) =
∥∥φw(a)− φw(b)

∥∥2

2
, m is a scalar margin, and [x]+ = max(0, x). To

avoid degenerate solutions we constrain the embeddings to lie on a unit hypersphere, i.e.,
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∥∥φ(x)
∥∥2

2
= 1, ∀x. Given a set of triplets Ts sampled from each shape s from our dataset S,

the triplet objective of the PEN is to minimize the triplet loss:

Ltriplet =
∑
s∈S

1

|Ts|
∑

(a,b,c)∈Ts

`(a, b, c). (5.2)

5.4.0.0.2 Sampling triplets. One simple strategy to sample triplets is to just access the

parts at the finest level of segmentation, then sample triplets by randomly taking fixed

number of similar pairs (a, b) from the same part and an equal number of negative points c

from another part. We call this strategy “leaf” triplet sampling.

An alternative strategy is to consider the part hierarchy tree for triplet sampling. Here,

we sample negative point pairs depending on the tree distance between the part groups (tree

nodes) they belong to. Given two nodes ni and nj , we use the sum of path lengths (number

of tree edges) from nodes ni and nj to their lowest common ancestor as the tree distance

δ(ni, nj) [244] . For example, if the two nodes are siblings (i.e., two parts belonging to the

same larger group), then their lowest common ancestor is their parent and their tree distance

is equal to 2 (i.e., count two edges that connect them to their parent). If two nodes are further

away in the hierarchy, then tree distance increases. In this manner, the tree distance reflects

how far two nodes (parts) are in the hierarchy.

We compute the probability of selecting the positive pair of points from node ni and the

negative pair using the point from another node nj as follows:

P (ni, nj) ∝
1

δ(ni, nj)
(5.3)

Sampling points in this way yields more frequent triplets that consist of negative pairs closer

in the hierarchy. Parts that are closer in the hierarchy tend to be spatially or geometrically

closer to each other, thus also harder to discriminate. We call this sampling strategy as

“hierarchy” triplet sampling. We discuss the effect of these two strategies in the experiments

section.
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5.4.0.0.3 Learning from noisy tag data. We can also utilize tag data for segments collected

from the COLLADA files, as described in Section 5.3. To train the network using tags, we

add two pointwise fully-connected layers on top of the embedding network (PEN). One

way to train this network is to define a categorical cross entropy over points whose parts

are tagged. However, as shown in Table 5.1, the total number of tagged points is small.

We instead found that a better strategy is to use a one-vs-rest binary cross entropy loss to

also make use of points in un-tagged parts. The reason is that if a part is not tagged in a

shape that has other parts labeled with tags existing in the shape metadata, then most likely,

that part should not be labeled with any of the existing tags for that shape (e.g., if a car has

tagged parts as ‘wheel’ and ‘window’, then other un-tagged parts should most likely not be

assigned with these tags).

More specifically, for every tag in our tag set L for a shape category, we define a binary

cross entropy loss by considering all points assigned with that tag as ‘positive’ (set P) while

the rest of points assigned with other or no tags as ‘negative’ (set N ). Given an output

probability prediction for assigning a point i with tag t, denoted as P (yi,t = 1) produced by

the last classification layer (sigmoid layer) of our network, our loss function over tags is

defined as follows:

Ltag=−
∑
t∈T

(∑
i∈P

logP (yi,t=1) +
∑
i∈N

log(1− P (yi,t=1))

)
(5.4)

5.4.0.0.4 Training. We first train our network to minimize the triplet loss Ltriplet based

on our dataset of shapes that contains part hierarchies. Training is done in a cross-category

manner on 16 categories1 of ShapenetCore dataset, as described in Section 5.3. We use the

Adam optimizer [120] with initial learning rate of 0.01 decayed by the factor of 10 whenever

the triplet loss stops decreasing over validation set. The mini-batches consist of 32 shapes.

For further efficiency, in each iteration we randomly sample a subset of 2.5k points (from

1These are the same 16 categories present in Shapenet semantic segmentation dataset from Yi et al. [254]
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main_cockpit airplane_fan body_fuselage wings
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bike_engine handle  tank tyre

Figure 5.4: Visualization of the embeddings. (Left) T-SNE visualization of embedding
shown as a color map. Embeddings for similar semantic parts are consistently embedded
close to each other as reflected by the similarity in their color. (Right) Heat map visualization
of tags predictions across a number of categories and tags. Redder values indicate a higher
probability of the tag. (Best seen magnified.)

the 10K original points) for each shape during training. The total number of triplets sampled

from a shape is kept constant.

Then for the 5 categories that include tags, we further fine-tune the learned embeddings

by learning the two additional pointwise fully-connected layer with a Sigmoid at the end

to minimize the tag loss Ltag. Since tags are distinct for each category, fine-tuning is done

in a category-specific manner (i.e., we produce a different embedding specialized for each

of these 5 categories). Although the triplet and tag loss could be combined, we choose a

stage-wise training approach since the shapes with part hierarchies are significantly more

numerous than the shapes that include tags as shown in Table 5.1. In our experiments we

discuss the effect of training only with the triplet loss, and also the effect of fine-tuning with

the tag loss in each category.

For training networks on few-shot learning task, we do hyper-parameters (batch size,

epochs, regularization etc.) search using validation set of only one category (‘airplane’) and

use the same hyper-parameters setting to train all models on all categories in the few-shot

learning task.
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Figure 5.5: Benifits of pretraining PEN using metric learning. Left: mIoU evaluation
for varying number of training shapes. Right: mIoU evaluation for varying number of
labeled points and fixing the number of training shapes to 8. We compare different baselines
and variants of PEN, including training from scratch, autoencoder for pre-training, as well
as PEN trained with metric learning triplets sampled from the leaf of the tree (Leaf) or based
on the hierarchy (Hierarchy). PEN outperforms both baselines with the hierarchy-based
sampling offering a slight advantage over the leaf-based one.

5.4.0.0.5 Few-shot learning. Given our network pre-trained on our shape datasets based

on part hierarchies and/or tags, we can further train it on other, much smaller, datasets of

shapes that include semantic part labels. To do this, once again we add two point-wise fully-

connected layers on top of the embedding layer, and a softmax layer to produce semantic

part label probabilities. In our experiments, we observe that the part labeling performance is

significantly increased when compared to training our network from scratch using semantic

part labels only as supervision.
5.4.0.0.6 Implementation details. In our implementation, the encoder of our network

extracts 1024-dimensional global shape embedding. The decoder concatenates the global em-

bedding with 64d point features from encoder, and finally transform it into a 64-dimensional

point-wise embeddings. Further details of the layers used in PEN are discussed in the

Appendix. Our implementation is based on PyTorch2.

2https://pytorch.org
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5.5 Results
We now discuss experiments performed to evaluate our method and alternatives. First,

we present qualitative analysis of learned embeddings, then we discuss a new benchmark we

introduce for few-shot segmentation and evaluation metrics, and finally we present results

and comparisons of our network with various baselines.

5.5.0.0.1 Visualization of the embeddings. We first present a qualitative analysis of the

PEN embeddings. The embeddings learnt using metric learning only (without the tag loss)

are visualized in Figure 5.4 (left). We use the t-SNE algorithm to embed the 64-dimensional

point embedding in 3D space. Interestingly, the descriptors produced by PEN consistently

embed the points belonging to similar parts close to each other without explicit semantic

supervision. We also visualize the embeddings predicted by PEN trained with metric

learning and fine-tuned with tag loss in Figure 5.4 (right). The embeddings have better

correspondence with the tags. Interestingly, the network predicts correct embeddings for

points with tags that are not mutually exclusive e.g. ‘cushion’ and ‘back’ of the chair.

5.5.0.0.2 Few-shot Segmentation Benchmark. We anticipate that learning from metadata

can improve semantic shape segmentation tasks, especially in the few-shot learning scenario.

To this end we have created a new benchmark on ShapeNet segmentation dataset [254],

in which we randomly select x fully labeled examples from the complete training set for

training the network, where x ∈ {4, 8, 12, 20, 40, 60, 120}. In this manner, we can test

the behaviour of methods with increasing training number of shapes, starting with the

few-shot scenario where only a handful of shapes (i.e., 4 or 8) is labeled. The performance

is measured as the mean intersection over union (mIOU) across all part labels and shapes in

the test splits. We exclude the shapes existing in our part hierarchy and tag datasets used for

pre-training PEN from the test splits.

We also introduce one more evaluation setting, where for each shape category, the

training shapes have smaller fractions of their original points labeled (20, 40 . . . 500) labeled

points compared to the original 2.5K points) The case of ∼ 20-40 labeled point simulates
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Figure 5.6: Benefit of training with tag supervision. The mIoU evaluation when tags
are available (5 categories: motorcycle, airplane, table, chair, car). We include the same
baselines and PEN variants as Figure 5.5, including two more PEN variants: one trained
with tags only (Tags) and another trained both on hierarchy and tags (Hierarchy + Tags).
Left: Shows the performance in the few-shot setting. Right: Shows the performance in the
few-point setting. In both cases the tag data (Hierarchy + Tags) provides additional benefits
over the PEN models trained with the hierarchy supervision (Hierarchy). Tag data alone is
not as effective as the autoencoder since the supervision is highly sparse.

the scenario where semantic annotations are collected through sparse user input (e.g., click

few points on shapes and label them).

5.5.0.0.3 Baselines. Since we utilize a vast number of unlabeled data from the same

domain it is important to compare with baselines. Our first baseline simply trains PEN from

scratch on the training splits of our few-shot segmentation benchmark using only semantic

label supervision (without using metadata). Second, we also compare with another baseline,

where we train an autoencoder network that leverages only geometry as an alternative

to produce point-wise embeddings. This network first encodes the input point cloud to

point-wise embeddings producing a 1024-dimensional point-wise representations exactly

as in PEN, then a decoder uses upconvolution to reconstruct the original point cloud. The

Chamfer distance between generated points and input points is used as a loss function to train

this network. We first pre-train the autoencoder on the shapes included in our part hierarchy

dataset. After this pre-training step, we retain the encoder and replace the geometry decoder

with PEN’s decoder and add two pointwise fully connected layers and a classification layer

to produce semantic part label probabilities. The resulting network is then trained in stages,
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first the decoder and then the entire network at smaller learning rate, on the training splits of

our few-shot segmentation benchmark.

Finally, we also evaluate the two strategies to pretrain the embedding network using

different triplet sampling techniques i.e. leaf-level shape parts (“leaf” triplet sampling) and

based on using the hierarchy tree (“hierarchy” triplet sampling) as described in (Section

7.3).

Next, we compare the performance of our method with the baselines and different

sampling strategies under the scenario of using only the triplet loss and cross-category

training. Then, we discuss the performance in the case where we additionally use the tag

loss.

5.5.0.0.4 Few-shot Segmentation Evaluation. In Figure 5.5 (left), we plot the mIOU of

the baselines along with our method. The plotted mIOU is obtained by taking the average

of the mIOU on our test splits over all categories and repeating each experiment 5 times.

The network trained from scratch (without any pre-training) has the worst performance. The

network based on the pre-trained autoencoder shows some improvement since its point-wise

representations reflect local and global geometric structure for the point cloud reconstruction,

which can be also relevant to the segmentation task. Our method consistently outperforms

the baselines. In particular, the “hierarchy” triplet sampling that uses the part hierarchy trees

to choose triplets for training our network performs the best on average. A 3.5% mIOU

improvement (10.2% drop in relative error) is observed compared to training from scratch

at 8 training examples - interestingly, the improvement is retained even for 120 training

examples. The “hierarchy” triplet sampling also improves over the “leaf” triplet sampling

until 20 training examples, then their difference gap between these two strategies is closed.

5.5.0.0.5 Evaluating with limited labeled points per shape. In the previous section we

observed the performance of our method and baselines by changing the number of training

shapes. Here we also examine the performance in the few-shot setting where we keep the

number of training shapes fixed and vary the number of labeled points per training shape. We
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retrain the above baselines (train from scratch, autoencoder) and triplet sampling strategies

(“leaf” and “hierarchy”) with 8 training examples, and vary the number of labeled points as

shown in the Figure 5.5 (right). Again our network using the “hierarchy” triplet sampling

performs better than the baselines. It offers 1.7% better mIOU (4.9% drop in relative error)

compared to training from the scratch using 20 labeled points.

5.5.0.0.6 Are tags useful? Here we repeat the two few-shot sementation tasks on 5 shape

categories (motorcycle, airplane, table, chair, car) that include some tagged parts in their

shape metadata. Here, we examine two more PEN variants: (a) PEN pre-trained using

the tag loss only (no triplet loss), then fine-tuned on the training splits of our semantic

segmentation benchmark (this baseline is simply called “tags” network), 2) our network

pre-trained using triplets loss based on the “hierarchy” sampling, then fine-tuned with the

tag loss, and finally further fine-tuned on the training splits of our semantic segmentation

benchmark (this baseline is called “Hierarchy+Tags” network). The two PEN variants are

trained per each category of the 5 categories. The results are shown in Figure 5.6.

When using 8 training examples, the Hierarchy+Tags network offers 4.8% better mIOU

(12.8% drop in relative error) on average compared to training from scratch in these 5

categories (refer Figure 5.6 (left)). An improvement of 2.8% mIOU (8.3% drop in relative

error) is maintained for 16 training examples. Similarly, when using 20 labeled points per

shape, Hierarchy+Tags performs 4.9% mIOU better (11.47% drop in relative error) than

training from scratch (refer Figure 5.6 (right)). In general, the Hierarchy+Tags PEN variant

outperforms all other baselines (training from scratch, autoencoder) and also the variant

pre-trained using tags only (“Tags” network) on both evaluation settings with limited number

of training shapes and limited number of training points. This shows that the combination

of pre-training through metric learning on part hierarchies and fine-tuning using tags results

in a better, warm starting model for semantic segmentation task.
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5.6 Conclusion
We presented a method to exploit existing part hierarchies and tag metadata associ-

ated with 3D shapes found in online repositories to pre-train deep networks for shape

segmentation. The trained network can be used to “warm start” a model for semantic

shape segmentation, improving performance in the few-shot setting. Future directions

include investigating alternative architectures and combining other types of metadata, such

as geometric alignment or material information.
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CHAPTER 6

REPRESENTATION LEARNING BY SURFACE FITTING

6.1 Introduction

Figure 6.1: SURFIT uses primitive fitting within a semi-supervised learning framework
for learning 3D shape representations. Top row: 3D shapes represented as point clouds,
where the color indicates the parts such as wings and engines. The induced partitions and
shape reconstruction obtained by fitting ellipsoids to each shape using our approach are
shown in the middle row and bottom row respectively. The induced partitions often have a
significant overlap with semantic parts.

In Chapter 5 we proposed a self-supervision approach that utilized part-hierarchies

present in CAD models to learn per-point features for 3D shapes. These part-hierarchies are

often inconsistent as they vary depending on the expertise and goals of the designers creating

models. The goal of this work is to avoid reliance on pre-built inconsistent part-hierarchies
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and decomposition of shapes, and discover these decomposition via primitive-fitting. To

this end we present SURFIT, a semi-supervised approach for learning 3D point-based

representations guided by 3D shape decomposition into geometric primitives. Our approach

exploits the fact that parts of 3D shapes are often aligned with simple geometric primitives,

such as ellipsoids and cuboids. Even if these primitives capture 3D shapes at a rather coarse

level, the induced partitions provide a strong prior for learning point representations useful

for part segmentation networks, as seen in Fig. 6.1. This purely geometric task allows

us to utilize vast amounts of unlabeled data in existing 3D shape repositories to guide

representation learning for part segmentation. We show that the resulting representations

are especially useful in the few-shot setting, where only a few labeled shapes are provided

as supervision.

The overall framework for SURFIT is based on a point embedding module and a primitive

fitting module, as illustrated in Fig. 6.2. The point embedding module is a deep network that

generates per-point embeddings for a 3D shape. Off-the-shelf networks can be used for this

purpose (e.g., PointNet++ [179], DGCNN [240]). The primitive fitting module follows a

novel iterative clustering and primitive parameter estimation scheme based on the obtained

per-point embeddings. It is fully differentiable, thus, the whole architecture can be trained

end-to-end. The objective is to minimize a reconstruction loss, computed as the Chamfer

distance between the 3D surface and the collection of fitted primitives. We experimented

with various geometric primitives, including ellipsoids or cuboids due to their simplicity. We

also considered parameterized geometric patches based on an Atlas [78], as an alternative

surface primitive representation.

Our method achieves 63.4% part IoU performance in ShapeNet segmentation dataset [28]

with just one labeled example per-class, outperforming the prior state-of-the-art [64] by

1.6%. We also present results on the PartNet dataset [159] where our approach provides

2.1% improvement compared to a baseline approach while using 10 labeled examples per-

class. We also perform extensive analysis of the impact of various design choices and
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Figure 6.2: Overview of SURFIT. Given a point cloud, the point-embedding module outputs
a feature representation for each point. This is processed through the primitive-fitting module,
that uses mean-shift clustering to cluster the points and fit a geometric primitive to each
cluster. We train the network with a reconstruction loss between the fitted primitives and
the input point cloud over the unlabeled shapes, and a categorical cross entropy loss over a
small number of labeled shapes.

primitive types on the resulting shape segmentations. Our experiments indicate that the use

of ellipsoids as geometric primitives provide the best performance, followed by cuboids,

then AtlasNet patches.

6.2 Related Work

We are interested in learning per-point representations of 3D shapes in a semi-supervised

manner given a large number of unlabeled shapes and only a few labeled examples. To this

end, we briefly review the literature on geometric primitive fitting and shape decomposition,

few-shot learning, and deep primitive fitting. We also discuss the limitations of prior work

and how we address them.

Geometric primitives and shape decomposition. Biederman’s recognition-by-components

theory [18] attempts to explain object recognition in humans by the ability to assemble basic

shapes such as cylinders and cones, called geons, into the complex objects encountered

in the visual world. Early work in cognitive science [94] shows that humans are likely to

decompose a 3D shape along regions of maximum concavity, resulting in parts that tend to
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be convex, often referred to as the “minima rule”. Classical approaches in computer vision

have modeled 3-D shapes as a composition of simpler primitives, e.g. work by Binford [19,

20] and Marr [151]. More recent work in geometric processing has developed shape

decomposition techniques that generate different types of primitives which are amenable to

tasks like editing, grasping, tracking and animation. Those have explored primitives like 3D

curves [66, 74, 154], cages [249], sphere-meshes [223], generalized cylinders [266], radial

basis functions [25, 148] and simple geometric primitives [192]. This motivates the use of

our geometric primitive fitting as a self-supervised task for learning representations.

Unsupervised learning for 3D data. Several previous techniques have been proposed to

learn 3D representations without relying on extra annotations. Many such techniques

rely on reconstruction approaches [65, 78, 250, 251, 265]. FoldingNet [251] uses an auto-

encoder trained with permutation invariant losses to reconstruct the point cloud. Their

decoder consists of a neural network representing a surface parametrized on a 2D grid.

AtlasNet [78] proposes using several such decoders that result in the reconstructed surface

being represented as a collection of surface patches. Li et al. [137] presents SO-Net that

models spatial distribution of point cloud by constructing a self-organizing map, which

is used to extract hierarchical features. The proposed architecture trained in auto-encoder

fashion learns representation useful for classification and segmentation. Chen et al. [36]

proposes an auto-encoder with multiple branches, where each branch is used to reconstruct

the shape by producing implicit fields instead of point clouds. However, this requires

one decoder for separate part, which restricts its use to category-specific models. Several

techniques also proposed models for generating implicit functions from point clouds [44,

70, 155], but it is unclear how well the representations learned by those methods perform in

recognition tasks.

Several works use reconstruction losses along with other self supervised tasks. Hassani

et al. propose multiple tasks: reconstruction, clustering and classification to learn point

representation for shapes. Thabet et al. [222] propose a self-supervision task of predicting the
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next point in a space filling curve (Morton-order curve) using RNN. The output features from

the RNN are used for semantic segmentation tasks. Several works have proposed learning

point representation using noisy labels and semantic tags available from various shape

repositories. Sharma et al. [203] learn point representations using noisy part hierarchies

and designer-labeled semantic tags for few-shot semantic segmentation. Muralikrishnan et

al. [161] design a U-Net to learn point representations that predicts user-prescribed shape-

level tags by first predicting intermediate semantic segmentation. More recently, Xie et

al. [189] learn per-point representation for 3D scenes, where point embeddings of matched

points from two different views of a scene are pushed closer than un-matched points under a

contrastive learning framework.

Closely related to our work, Gadelha et al. [64] use approximate convex decomposition

of watertight meshes as source of self-supervision by training a metric over point clouds

that respect the given decomposition. Our approach directly operates on point clouds

and integrates the decomposition objectives in a unified and end-to-end trainable manner.

Empirically we observe that this improves performance. It also removes the need for having

a black-box decomposition approach that is separated from the network training.

Semi-supervised learning for 3D data. Similar to our approach, Alliegro et al. [11] use joint

supervised and self-supervised learning for learning 3D shape features. Their approach is

based on solving 3D jigsaw puzzles as a self-supervised task to learn shape representation for

classification and part segmentation. Wang et al. [232] proposed semi-supervised approach

that aligns a labeled template shape to unlabeled target shapes to transfer labels using learned

deformation.

Deep primitive fitting. Several approaches have investigated the use of deep learning mod-

els for shape decomposition. Their common idea is to learn point-level representations

used to generate primitives. Several primitive types have been proposed, including su-

perquadrics [173, 174], cuboids [63, 225] and radial basis functions [70]. However, all these

approaches have focused on generative tasks with the goal of editing or manipulating a
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3D shape. Our insight is that reconstructing a shape by assembling simpler components

improves representation learning for discriminative tasks, especially when only a few labeled

training examples are available.

6.3 Method

Our method assumes that one is provided with a small set of labeled shapes Xl and

a large set of unlabeled shapes Xu. Each shape X ∈ {Xl,Xu} is represented as a point

cloud with N points, i.e., X = {xi} where xi ∈ R3. The shapes in Xl additionally come

with part label Y = {yi} for each point. In our experiments we use the entire set of shapes

from the ShapeNet core dataset [28] and few labeled examples from the ShapeNet semantic

segmentation dataset and PartNet dataset.

The architecture of SURFIT consists of a point embedding module Φ and a primitive

fitting module Ψ. The point embedding module Φ(X) maps the shape into embeddings

corresponding to each point {Φ(xi)} ∈ RD. The primitive fitting module Ψ maps the set

of point embeddings to a set of primitives {Pi} ∈ P . Thus Ψ ◦ Φ : X → P is a mapping

from point clouds to primitives. In addition the point embeddings can be mapped to point

labels via a classification function Θ and thus, Θ ◦ Φ : X → Y . We follow a joint training

approach where shapes from Xl are used to compute a supervised loss and the shapes from

Xu are used to compute a self-supervised loss for learning by minimizing the following

objective:

min
Φ,Ψ,Θ

Lssl + Lsl, where (6.1)

Lssl = E
X∼Xu

[
`ssl
(
X,Ψ ◦ Φ(X)

)]
, and (6.2)

Lsl = E
(X,Y )∼Xl

[
`sl
(
Y,Θ ◦ Φ(X)

)]
. (6.3)

Here `ssl is defined as a reconstruction error between the point cloud and a set of primitives,

while `sl is the cross entropy loss between predicted and true labels. We describe the details
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of the point embedding module in Sec.6.3.1 and the primitive fitting module in Sec. 6.3.2.

Finally in Sec. 6.3.3 we describe various loss functions used to train SURFIT.

6.3.1 Point embedding module

This module produces an embedding of each point in a point cloud. While any point

cloud architecture [178, 179, 240] can be used, we experiment with PointNet++ [179] and

DGCNN [240], two popular architectures for point cloud segmentation. These architectures

have also been used in prior work on few-shot semantic segmentation making a comparison

easier.

6.3.2 Primitive fitting module

The primitive fitting module is divided into a decomposition step that groups the set of points

into clusters in the embedding space, and a fitting step that estimates the parameters of the

primitive for each cluster.

Decomposing a point cloud. These point embeddings Φ(xi) ∈ RD are grouped into M

clusters using a differentiable mean-shift clustering. The motivation behind the choice of

mean-shift over other clustering approaches such as k-means is that it allows the number of

clusters to vary according to a kernel bandwidth. In general we expect that different shapes

require different number of clusters. We use recurrent mean-shift updates in a differentiable

manner as proposed by [127]. Specifically, we initialize seed points as Y (0) = Z ∈ RN×D

and update them as follows:

Y (t) = KZD−1 (6.4)

We use the von Mises-Fisher kernel [150] K = exp(Y (t−1)ZT/b2), where D = diag(K1)

and b is the bandwidth. K is updated after every iteration. The embeddings are normalized

to unit norm, i.e., ||zi||2 = 1, after each iteration. We perform fixed number of iterations

during training. After these updates, a non-max suppression step yields M cluster centers

cm,m = {1, . . . ,M} while making sure number of clusters are bounded. Having updated
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the embeddings with the mean-shift iterations, we can now define a soft membership W for

each point xi, represented by the embedding vector yi1, to the cluster center cm:

wi,m =
exp(c>myi)∑
m exp(c>myi)

(6.5)

where wi,m = 1 represents the full membership of the ith point to the mth cluster. The

supplementary material contains more details about non-max suppression and bandwidth

computation.

Ellipsoid fitting. Given the clustering, we then fit an ellipsoid to each of the clusters.

Traditionally, fitting an ellipsoid to a point cloud is formulated as a minimum volume

enclosing ellipsoid [56] and solved using the Khachiyan algorithm. However, this is harder

to incorporate in an end-to-end training pipeline and is also susceptible to outliers (see

supplementary materials for details). We instead use a simpler procedure based on singular

value decomposition (SVD). Given the membership of the point to mth cluster we first

center the points and compute the SVD as:

µ = WmXZ−1 (6.6)

X = X − µ (6.7)

U, S, V = SVD(X
T
WmXZ−1) (6.8)

where Wm is the diagonal matrix with wi,m as its diagonal entries (Wm [i, i] = wi,m for mth

cluster) and Z = trace(Wm). The orientation of an ellipsoid is given by V . The length of

the principal axes can be computed from the singular values as ai = κ
√
Si. We select κ by

cross validation. The matrix Wm selects the points with membership to the mth cluster in a

1Superscript t is dropped.
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‘soft’ or weighted fashion, and the SVD in Eq. 6.8 gives us the parameters of the ellipsoid

that fits these weighted points.

Discussion — alternate choices for primitives. Our approach can be used to fit cuboids

instead of ellipsoids by considering the bounding box of the fitted ellipsoids instead. This

may induce different partitions over the point clouds, and we empirically compare its

performance in the Sec. 7.4. Another choice is to represent the surface using an Atlas – a

collection of parameterized patches. We use the technique proposed in AtlasNet [78] where

neural networks fθ parameterize the coordinate charts fθ : [0, 1]2 → (x, y, z) conditioned

on a latent code computed from the point cloud. The decoders are trained along with the

encoder using gradient descent to minimize Chamfer distance between input points and

output points across all decoders. An encoder trained in this fashion learns to decompose

input points into complex primitives, i.e. via arbitrary deformations of the 2D plane. Point

representations learnt in this fashion by the encoder can be used for downstream few-shot

semantic segmentation task as shown in Sec. 7.4 and Tab. 6.2. However, this approach

requires adding multiple decoder neural networks. Our ellipsoid fitting approach does

not require significant architecture changes and avoids the extra parameters required by

AtlasNet.

6.3.3 Loss functions

Reconstruction loss. This is computed as the Chamfer distance of input point clouds from

predicted primitives. For the distance of a point on the input surface to the predicted surface

we use

L1 =
N∑
i=1

M

min
m

D2
m(xi), (6.9)

where M is the number of clusters and Dm(xi) is the distance of input point xi from the mth

primitive. This is one side of Chamfer distance, ensuring that the predicted primitives cover

the input surface. Dm is approximated using analytic distance function [2] which performs

better than a sampling based approach (see the supplementary material for more details). To
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ensure that the input surface covers the predicted primitives we minimize the following loss:

L2 =
M∑
m=1

∑
p∼Em

N

min
i=1
||xi − p||22 (6.10)

where Em is the mth fitted primitive. We sample 10k points over all ellipsoids, weighted by

the surface area of each primitive. We uniformly sample each primitive surface. Please refer

to Supplementary material for more information on uniformly sampling an ellipsoid surface.

We use the two-sided loss to minimize reconstruction error:

`recon = L1 + L2 (6.11)

The hypothesis is that for a small number of primitives the above losses encourage

the predicted primitives to fit the input surface. Since the fitting is done using a union of

convex primitives, each diagonal entry of the matrix Wm in Eq. 6.8 should have higher

weights to sets of points that belong to convex regions, thereby resulting in a convex (or

approximately convex) segmentation of a point cloud. The point representations learnt in

this manner are helpful for point cloud segmentation as shown in Table 6.2.

Intersection loss. To encourage spatially compact clusters we introduce a loss function

that penalizes overlap between ellipsoids. Note that the clustering objective does not

guarantee this as they operate on an abstract embedding space. Specifically, for each point p

sampled inside the surface of predicted shape should be contained inside a single primitive.

Alternatively the corresponding primitive should have negative signed distance Sm(p) at that

point p, whereas the the signed distance (SD) should be positive for the remaining primitives.

Let Vm be the set of points sampled inside the primitive m. Then intersection loss is defined

as

`inter =
∑
m

∑
p∼Vm

∑
j 6=m

bSj(p)c2−, (6.12)

94



where bSm(p)c− = min(Sm(p), 0) includes only the points with negative SD, as points

with positive SD are outside the primitive and do not contribute in intersection. We use a

differentiable approximation of the SD function of an ellipsoid proposed in [2].

Similarity loss. We found that all the per-point embedding are similar at initialization

resulting in a mode collapse of the clusters. This local minima can be avoided by spreading

the point embeddings across the space. We add a small penalty only at early stage of training

that minimizes the similarity of output point embeddings Y from mean-shift iterations

(Eq. 6.4) as follows:

`sym =
∑
i 6=j

(1 + yiy
>
j )2 (6.13)

6.3.4 Training details

We train our network jointly using both a self-supervised loss and a supervised loss. We

alternate between our self-supervised training while sampling point clouds from the entire

unlabeled Xu dataset and supervised training while taking limited samples from the labeled

Xl set. Hence our joint supervision and self-supervision approach follows semi-supervised

learning paradigm.

L =
∑
X∼Xu

`recon + λ1`inter + λ2`sym︸ ︷︷ ︸
`ssl(self-supervision)

+
∑
X∼Xl

`ce︸ ︷︷ ︸
`sl(supervision)

(6.14)

where `ce is a cross entropy loss, λ1 and λ2 are constants.

Back-propagation and numerical stability

• To back-propagate the gradients through SVD computation we use analytic gradients

derived by Ionescu et al. [149]. When back-propagating gradients through SVD,

gradients can go to infinity when singular values are indistinct. This happens when

membership weights in a cluster are concentrated on a line, point or sphere. We
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Samples/cls. k=1 k=3 k=5 k=10 k=20 k=50 k=100 k=max

Baseline 53.15 ± 2.4 59.54 ± 1.4 68.14 ± 0.9 71.32 ± 0.5 75.22 ± 0.8 78.79 ± 0.4 79.67 ± 0.3 81.40 ± 0.4
SURFIT 63.14 ± 3.4 71.24 ± 1.3 73.75 ± 0.7 75.03 ± 0.9 76.73 ± 0.5 79.28 ± 0.2 80.16 ± 0.2 80.40 ± 0.1

Table 6.1: Few-shot segmentation on the ShapeNet dataset (class avg. IoU over 5
rounds). The number of shots or samples per class is denoted by k for each of the 16
ShapeNet shape categories used for supervised training. Our proposed method SURFIT

consistently outperforms the baselines.

implemented a custom Pytorch layer following [138], that changes the term K =

1
σi−σj from Eq: 13 in [108] to K = 1

sign(σi−σj)(max(|σi−σj |,ε) with ε = 1e − 6. SVD

computation can still be unstable when the condition number of the input matrix is

large. In this case, we remove that cluster from the backward pass when condition

number is greater than 1e5.

• Differentiability of mean shift clustering procedure: The membership matrix W ∈

RN×M is constructed by doing non-max suppression (NMS) over output Y of mean

shift iteration. The derivative of NMS w.r.t embeddings Y is either zero or undefined,

thereby making it non-differentiable. Thus we remove NMS from the computation

graph and back-propagate through the rest of the graph, which is differentiable through

Eq. 6.5. This can be seen as a straight-through estimator [196], which has been used

in previous shape parsing works [138, 204].

We will release code of our implementation upon acceptance of the manuscript.

6.4 Experiments

6.4.1 Datasets

As a source of unlabeled data for the task of self supervision, we use the Shapenet

Core dataset [28], which consists of 55 categories with 55,447 meshes in total. We sample

these meshes uniformly to get 2048 points per shape. For the task of few-shot semantic

segmentation, we use the Shapenet Semantic Segmentation dataset, which consists of 16,881

labeled point clouds across 16 shape categories with total 50 part categories.
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Figure 6.3: Visualization of predicted semantic labels and ellipsoids on the Shapenet
dataset. Top: Ground truth point clouds, middle: predicted labels using our fitting ap-
proach, trained using k = 10 labeled examples per category, bottom: predicted ellipsoids.
SURFIT predicts variable number of ellipsoids to approximate the input point cloud while
maintaining correspondence with semantic parts.

b.

c.

d.

a.

Figure 6.4: Visualization of various primitive fitting approaches. a) input point cloud.
b) Ellipsoid fitting using our approach. c) cuboid fitting using our approach. d) different
primitives from AtlasNet. Different colors are used to depict different primitives. For
AtlasNet we visualize each chart with a unique color. Notice that geometric primitives are
better localized and approximate the shape in fewer primitives in comparison to AtlasNet.
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Figure 6.5: Analysis of clustering. We analyze two clustering approaches, 1) SURFIT and
2) directly clustering points using K-Means. Top: normalized mutual information (NMI)
and bottom: precision vs recall between predicted clusters and semantic part labels. SURFIT

gives higher average NMI (54.3 vs 35.4) and higher precision than clustering with only
points as features.
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Figure 6.6: TSNE visualization of learned embeddings. For each shape category, we take
a fixed number of shapes and extract point embeddings from SURFIT. We run TSNE on each
category separately to project the 128-D embeddings to 3D color space. Notice that points
belonging to same semantic parts are colored similarly, which indicates the consistency of
learned embeddings.

We also evaluate our method on the PartNet dataset [160]. This dataset provides fine-

grained semantic segmentation annotation for various 3D shape categories, unlike the more

coarse-level shape parts in the ShapeNet dataset. We use 12 categories from “level-3”,

which denotes the finest level of segmentation. For training different approaches in few-shot

framework, we remove test shapes of labeled dataset Xl from our self-supervision dataset

Xu. This avoids train-test set overlap.

6.4.2 Few-shot part segmentation on Shapenet

For each category from the ShapeNet part segmentation dataset, we randomly sample

k labeled shapes (16 × k in total) and use these for training the semantic segmentation

component of our model. We use the entire training set from the ShapeNet core dataset for

self supervision task. We train a single model on all 16 shape categories of ShapeNet.

Baselines. Our first baseline takes the PointNet++ as the base architecture and trains it

from scratch on only labeled training examples, using k labeled shapes per category in a

few-shot setup. Second, we create a reconstruction baseline – we use a PointNet++ as a
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Method 1% 5% 1% 5%
ins IoU ins IoU cls IoU cls IoU

SO-Net [136] 64.0 69.0 - -
PointCapsNet [265] 67.0 70.0 - -
MortonNet [222] - 77.1 - -
Deformation [232] 68.9 - 66.2 -
JointSSL [11] 71.9 77.4 - -
Multi-task [87] 68.2 77.7 - 72.1
ACD [64] † 75.1 78.6 74.6 77.5
SURFIT w/ Atlas 73.8 78.6 74.5 78.9
SURFIT w/ Cuboid 75.2 78.6 74.6 78.6
SURFIT w/ Ellipsoid 75.4 78.7 75.3 79.0

Table 6.2: Comparison with state-of-the-art few-shot part segmentation methods on ShapeNet.
Performance is evaluated using instance-averaged and class-averages IoU. † - We re-ran the publicly-
released code from ACD [64] on our data splits, ensuring fair comparison.

shared feature extractor, which extracts a global shape encoding that is input to an AtlasNet

decoder [78] with 25 charts. A separate decoder is used to predict per-point semantic labels.

This network is trained using a Chamfer distance-based reconstruction loss using the entire

unlabeled training set and using k labeled training examples. We use 5 different rounds with

sampled labeled sets at various values of k and report their average performance. We train a

single model for all categories.

Discussion of results. Table 6.1 shows results on few-shot segmentation at different number

of labeled examples. Our method SURFIT performs better than the supervised baseline

showing the effectiveness of our method as semi-supervised approach.

In Table 6.2 we compare our approach with previous methods using instance IOU and

class IOU [179], using 1% and 5% of the labeled training set to train different methods.

Note that instance IOU is highly influenced by the shape categories with large number of

testing shapes e.g. Chair, Table. Class IOU, on the other hand gives equal importance to

all categories, hence it is a more robust evaluation metric. SURFIT performs better than

previous self-supervised [64, 87, 222] and semi-supervised [11, 232] approaches. Notable
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our approach significantly outperforms learned deformation based approach proposed by

Wang et al. [232] 2. SURFIT with ellipsoid as primitive outperforms previous methods

including SURFIT baseline with AtlasNet. Interestingly, SURFIT with AtlasNet outperforms

all previous baselines except ACD3. We speculate that since primitives predicted by AtlasNet

are highly overlapped and less localized in comparison to our ellipsoid and cuboid fitting

approaches as shown in Figure 6.4, this results in worse performance of AtlasNet.

SURFIT with ellipsoid primitives gives the best results, outperforming ACD without

having to rely on an external black-box method for the self-supervisory training signal. This

shows that our approach of primitive fitting in an end-to-end trainable manner is better than

training a network using contrastive learning guided by approximate convex decomposition

of water-tight meshes as proposed by ACD.

In Figure 6.3 we show predicted semantic labels using SURFIT along with fitted ellip-

soids. In Figure 6.4 we show outputs of various self supervision techniques using primitive

fitting. We experimented with both cuboid and ellipsoid fitting as a self supervision task. We

observed that both performs similar qualitatively and quantitatively. The fitted primitives

using ellipsoid/cuboid fitting approaches are more aligned with different parts of the shape

in comparison to the outputs of AtlasNet.

Effect of the size of unlabeled dataset. In the Table 6.3 we show the effect of size of

unlabeled dataset used for self-supervision. We observe improvement in performance of

5-shot semantic segmentation task with increase in unlabeled dataset.

Effect of similarity loss. Similarity loss is only used in the initial stage of training as

it prevents the network converging to a local minima at this early phase. Without this

procedure, our performance is similar to Baseline (training from scratch). However, using

2We run their code on all 16 categories on 5 different random splits

3We run their code on our random split for fair comparison.
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size 0 2.5k 25k 52k
class avg. IOU 68.1 68.9 72.6 73.7

Table 6.3: Effect of the size of unlabeled dataset used for self-supervision on 5-shot semantic
segmentation on ShapeNet.

only similarity loss (without reconstruction loss) leads to worse results (44.2 mIOU) than

Baseline (68.1 mIOU) on few-shot k=5 setting.

Analysis of learned point embeddings In Figure 6.5 we quantitatively analyze the per-

formance of clustering induced by SURFIT and compare it with clustering obtained by

running the K-Means algorithm directly on point clouds. We take 340 shapes from the

Airplane category of ShapeNet for this experiment and show the histogram of Normalized

Mutual Information (NMI) [211] and the precision-recall curve [62] between predicted

clusters and ground truth part labels. Our approach produces clusters with higher NMI

(54.3 vs 35.4), which shows better alignment of our predicted point clusters with the ground

truth part labels. Our approach also produces higher precision clusters in comparison to

K-Means at equivalent recall, which shows the tendency of our algorithm to over-segment a

shape. To further analyze the consistency of learned point embedding across shapes, we use

TSNE [227] to visualize point embedding by projecting them to 3D color space. We use a

fixed number of shapes for each category and run TSNE on each category separately. Figure

6.6 shows points belonging to same semantic parts are consistently projected to similar

colors, further confirming the consistency of learned embeddings.

6.4.3 Few-shot segmantic segmentation on PartNet

Here we experiment on the PartNet dataset for the task of few-shot semantic segmenta-

tion. For each category from this dataset, we randomly sample k labeled shapes and use

these for training semantic segmentation part of the architecture. Similar to our previous

experiment, we use the complete training shapes from the ShapeNet Core dataset for the

self-supervision task. We choose DGCNN as a backbone architecture for this experiment.
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Samples/cls. k=10 k=20 k=40

Baseline 27.2±0.7 31.6±0.6 36.7±0.9
SURFIT w/ Atlas 28.5±0.7 31.7±0.7 36.5±0.7
SURFIT w/ Cuboid 29.3±0.4 32.4±0.7 37.5±0.5
SURFIT w/ Ellipsoid 29.4±0.7 32.6± 0.6 37.6±0.4

Table 6.4: Few-shot segmentation on the PartNet dataset (part avg. IoU over 5 rounds).
The number of shots or samples per class is denoted by k for each of the 12 PartNet
categories used for supervised training. Our proposed method SURFIT consistently out
performs the baseline.

Unlike our Shapenet experiments, in the PartNet experiment we train a separate model for

each category, as done in the original paper [160].

Similar to our previous experiment, we create two baselines – 1) we train a network

from scratch providing only k labeled examples, and 2) we train the AtlasNet on the entire

unlabeled training set using the self-supervised reconstruction loss and only k labeled

examples as supervision.

Table 6.4 shows part avg. IOU for the different methods. The AtlasNet method shows

improvement over the purely-supervised baseline. SURFIT shows improvement over both

AtlasNet and Baseline, indicating the effectiveness of our approach in the fine-grained

semantic segmentation setting as well. We further experiment with cuboids as the primi-

tive, which achieves similar performance as using ellipsoid primitives, consistent with our

previous ShapeNet results.

Effect of intersection loss. We also experiment with adding intersection loss while training

SURFIT with ellipsoid primitive in Table 6.5. Intersection loss gives improvement only

in PartNet dataset. We speculate that since PartNet contains fine-grained segmentation of

shapes, minimizing overlap between primitives here is more helpful than in Shapenet dataset

which contains only coarse level of segmentation. Table 6.2 and 6.4 shows best performing

approach.
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Method
Shapenet
cls. IoU

PartNet
part avg. IoU

k=1% k=5% k=10 k=20
SURFIT w/ Ellipsoids 75.3 79.0 28.9 32.1
SURFIT w/ Ellipsoids+inter 75.0 79.0 29.4 32.6

Table 6.5: Effect of intersection loss. Average performance over all categories for SURFIT

trained with intersection loss (+inter) and without intersection loss on ShapeNet and PartNet
dataset. SURFIT trained with intersection loss (+inter) gives improvement on PartNet
dataset.

6.5 Conclusion

We proposed a simple semi-supervised learning approach for learning point embeddings

for few shot semantic segmentation. Our approach learns to decompose an unlabeled point

cloud using a set of geometric primitives, such as ellipsoids and cuboids, or alternatively

deformed planes as in AtlasNet. We provide an end-to-end trainable framework for incor-

porating this task into standard network architectures for point cloud segmentation. Our

method can be readily applied to existing architectures for semantic segmentation and shows

improvements over fully-supervised baselines and other approaches on the ShapeNet and

PartNet datasets. This indicates that learning to reconstruct a shape using primitives can

induce representations useful for discriminative downstream tasks. Our method also has

limitations. We primarily rely on basic primitives of a single type (i.e. ellipsoid, cuboids,

or deformed planes). Predicting combinations of primitives or other types of primitives

for each shape could be useful to capture more part variability. In addition, our primitives

capture the shape rather coarsely, making our representations less fit for fine-grained tasks.

Our current implementation requires an input unlabeled set of shapes together with a small

labeled one. It would be interesting to also explore unsupervised approaches based on

primitive and other forms of surface fitting.
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CHAPTER 7

MVDECOR: MULTI-VIEW DENSE CORRESPONDENCE
LEARNING FOR FINE- GRAINED 3D SEGMENTATION

7.1 Introduction

2D CNN

2D CNN
Input GT OutputInput GTOutput

Figure 7.1: The pipeline for MVDECOR. Left: Dense 2D representations are learned
using a pixel-level correspondence learning framework guided by the 3D shape. Right: The
2D representations can be fine-tuned on a few labeled examples for 3D shape segmentation
tasks in a multi-view setting.

Part-level interpretation of 3D shapes is critical for many applications in graphics and

vision. Specifically, our goal in this work is to perform fine-grained shape segmentation

from limited available data. This poses two main challenges. First, training deep networks

relies on large-scale labeled datasets that require tremendous annotation effort. For this

reason, previous methods have proposed self-supervised feature extraction, however these

mostly rely on point cloud or voxel-based networks. This brings us to the second challenge –

these 3D networks have a limited ability to capture fine-grained surface details since their

input points and voxels often fail to capture such due to discretization artifacts.
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We present MVDECOR, a self-supervised technique for learning dense 3D shape rep-

resentations based on the task of learning correspondences across views of a 3D shape

(Fig. 7.1). At training time we render 3D shapes from multiple views with known corre-

spondences and setup a contrastive learning task to train 2D CNNs. In doing so, we take

advantage of the excellent abilities of 2D networks to capture fine details. The learned 2D

representations can be directly used for part segmentation on images, or projected onto the

shape surface to produce a 3D representation for 3D tasks (Fig. 7.1 & 7.2). The approach

works well in standard few-shot fine-grained 3D part segmentation benchmarks, outperform-

ing prior work based on 2D and 3D self-supervised learning (Section 7.3, Tab. 7.1 & 7.2).

Many previous representation learning methods for 3D shapes are based on self recon-

struction loss [7, 36, 65, 78, 251] or contrastive learning [98, 189, 261] where point clouds

and voxels are the main choices of 3D data formats. In contrast, our work is motivated

from the observation that view-based surface representations are more effective at modeling

high-resolution surface details and texture than their 3D counterparts based on point clouds

or voxel occupancy. We also benefit from recent advances in network architectures and

self-supervised learning for 2D CNNs. In addition, our approach allows training the network

using 2D labeled views rather than fully labeled 3D shapes. This is particularly beneficial

because annotating 3D shapes for fine-grained semantic segmentation is often done using

2D projections of the shape to avoid laborious 3D manipulation operations [254].

Compared to techniques based on 3D self-supervision, MVDECOR demonstrates sig-

nificant advantages. On the PartNet dataset [159] with fine-grained (Level-3) parts, our

method achieves 32.6% mIOU compared to a PointContrast [189], a self-supervised learning

technique that achieves 31.0% mIOU (Tab. 7.1). While some of the benefit comes from

the advantages of view-based representations, e.g., off-the-self 2D CNNs trained from

scratch outperform their 3D counterparts, this alone does not explain the performance

gains. MVDECOR outperforms both ImageNet pretrained models (29.3% mIOU) and dense

contrastive learning [238] (30.8% mIOU), suggesting that our self-supervision is benefi-
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cial. These improvements over baselines are even larger when sparse view supervision is

provided — MVDECOR generalizes to novel views as it has learned a view invariant local

representations of shapes (Tab. 7.2).

We also present experiments on the RenderPeople [5] dataset consisting of textured

3D shapes of humans, which we label with 13 parts (Section 7.4). We observe that 2D

self-supervised techniques performs better than their 3D counterparts, while MVDECOR

offers larger gains over both 2D and 3D baselines (Tab. 7.4). Surprisingly on this dataset we

find that when texture is available, the view-based representations do not require the use of

depth and normal information, and in fact the models generalize better without those, as

explained in Section 7.4.6. MVDECOR gives 17.3% mIOU improvement over training a

network from scratch when only a few labeled examples are provided for supervision.

To summarize, we show that multi-view dense correspondence learning induces view-

invariant local representations that generalize well on few-shot 3D part segmentation tasks.

Our approach MVDECOR outperforms state-of-the art 2D contrastive learning methods, as

well as 3D contrastive learning methods that operate on point cloud representations. After a

discussion of prior work on 2D and 3D self-supervised learning in Section 7.2, we describe

our method and experiments in Section 7.3 and Section 7.4 respectively.

7.2 Related Works

Our work lies at the intersection of 3D self-supervision, 2D self-supervision, and multi-

view representations.

7.2.0.0.1 3D self-supervision. Many self-supervised approaches in 3D shape are based

on training an autoencoder with a reconstruction loss. For example, Achlioptas et al. [7]

train a PointNet [178] with a Chamfer or EMD loss. FoldingNet [251] deforms a 2D

grid using a deep network conditioned on the shape encoding to match the output shape.

AtlasNet [78] uses multiple decoders to reconstruct the surface as a collection of patches.

BAE-NET [36] splits reconstruction across decoding branches, but adopted an implicit field
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shape representation instead of point clouds. Once trained the representations from the

encoder can be used for downstream tasks. Alternatives to reconstruction include prediction

based on k-means [11], convex decomposition [141] and 3D jigsaw puzzles [191]. Recently

Wang et al. [231] proposed an occlusion completion as a pre-training task for 3D shapes, and

show improvement in object classification and segmentation tasks. Unsupervised learning

for recovering dense correspondences between non-rigid shapes has been studied in [73,80],

however it relies on a near-isometry assumption that does not fit clothed people and furniture

parts, used in our work. We instead use partial correspondences from the 3D models to

supervise 2D networks. Wang et al. [232] proposed a deep deformation approach that

aligns a labeled template shape to unlabeled target shapes to transfer labels. However this

method is not effective for fine-grained segmentation of shapes as shown in Section 7.4

since deformation often distorts surface details. A few recent works [189, 235, 262] have

learned per-point representations for point clouds under a contrastive learning framework.

The networks pre-trained in this fashion are further fine-tuned for 3D downstream tasks.

However, point cloud based shape representations limit the ability to capture fine-grained

surface details and texture.

7.2.0.0.2 2D self-supervision. While early work focused on training networks based

on proxy tasks such as image colorization, rotation prediction, and jigsaw puzzles, con-

trastive learning [32, 76, 89, 248] has emerged as a popular technique. Most of these

representations are based on variants of InfoNCE loss [168], where the mutual information

between two views of an image obtained by applying synthetic transformations is maximized.

DenseCL [238] modifies the contrastive approach to include information across locations

within an image to learn dense representations. We use this method as the representative

2D self-supervised baseline. However, the above methods work on the 2D domain and lack

any 3D priors incorporated either in the network or in the training losses. Correspondence

learning has been used as self-supervision task to learn local descriptors for geometric

matching in structure from motion applications [99, 146, 190, 238]. However, much of this
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Embedding
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Dense Correspondence Learning

Feature Map

Supervised Fine-tuning Multi-view prediction

Figure 7.2: Overview of MVDECOR. Top left: Our self-supervision approach takes two
overlapping views (RGB image, with optional normal and depth maps) of a 3D shape
and passes it through a network that produces per-pixel embeddings. We define a dense
contrastive loss promoting similarity between matched pixels and minimizing similarity
between un-matched pixels. Bottom left: Once the network is trained we add a segmentation
head and fine-tune the entire architecture on a few labeled examples to predict per-pixel
semantic labels. Right: Labels predicted by the 2D network for each view are back-projected
to the 3D surface and aggregated using a voting scheme.

work has focused on instance matching, while our goal is to generalize across part instances

within a category. The most related work to ours is Pri3D [99] who also propose to learns

geometry-aware embedding with a contrastive loss based on pixel correspondences across

views. Their work focuses on improving 2D representations using 3D supervision for 2D

tasks such as scene segmentation and object detection, while we deal with fine-grained 3D

segmentation.

7.2.0.0.3 Multi-view representation. Our method is motivated by earlier multi-view ap-

proaches for 3D shape recognition and segmentation [39, 55, 101, 117, 212]. In these

approaches, multiple views of the shapes are processed by a 2D network to obtain pixel-

level representations. These are back-projected to the 3D shape to produce 3D surface

representations. More recently, Kundu et al. [55] applies multi-view fusion for 3D semantic

segmentation of scenes. The above approaches benefit from large-scale ImageNet pretrain-

ing, and the ability of 2D CNNs to handle higher image resolutions compared to voxel

grids and point clouds. They continue to outperform 3D deep networks on many 3D tasks
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(e.g., [75,214]). Still, all the above view-based methods are still trained in a fully supervised

manner, while ours is based on self-supervision.

7.3 Method

Our goal is to learn a multi-view representation for 3D shapes for the task of fine-grained

3D shape segmentation. For this task, we assume a large dataset of unlabeled 3D shapes

and a small number of labeled examples. For the latter, we consider two settings (1) when

labels are provided on the surface of the 3D shape, and (2) labels are provided on the images

(projections) of the 3D shape. To that end, we use multi-view dense correspondence learning

for pre-training, followed by a feature fine-tuning stage on the downstream segmentation

task. In the pre-training stage described in Section 7.3.1, we have a set of unlabeled 3D

shapes (either with or w/o textures) from which we render 2D views, and build ground-truth

dense correspondences between them. After pre-training on the dense correspondence

learning task, the network learns pixel-level features that are robust to view changes and is

aware of fine-grained details.

In the fine-tuning stage (Section 7.3.2), we train a simple convolutional head on top

of the pixel-level embeddings, supervised by a small number of annotated examples, to

segment the multi-view renderings of the 3D shapes. The network pre-trained in this fashion

produces better segmentation results under the few-shot semantic segmentation regime in

comparison to baselines. We aggregate multi-view segmentation maps onto 3D surface

via an entropy-based voting scheme (Section 7.3.3). Figure 7.2 shows the overview of our

approach.

7.3.1 Multi-view dense correspondence learning

Let us denote the set of unlabeled shapes as Xu. Each shape instance X ∈ Xu can be

rendered from a viewpoint i into color, normal and depth images denoted as V i. We use a

2D CNN backbone Φ which maps each view into pixel-wise embeddings {Φ(V i)p} ∈ RD,
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where p is an index of a pixel and D is the dimensionality of the embedding space. We

pre-train the network Φ using the following self-supervised loss:

Lssl = E
V i,V j∼R(X)

X∼Xu

[
`ssl
(
Φ(V i),Φ(V j)

)]
(7.1)

whereR(X) is the set of 2D renderings of shape X , and V i and V j are sampled renderings

in different views fromR(X). The self-supervision loss `ssl is applied to the pair of sampled

views V i and V j .

Since V i and V j originate from the 3D mesh, each foreground pixel in the rendered

images corresponds to a 3D point on the surface of a 3D object. We find matching pixels

from V i and V j when their corresponding points in 3D lie within a small threshold radius.

We use the obtained dense correspondences in the self-supervision task. Specifically, we

train the network to minimize the distance between pixel embeddings that correspond to the

same points in 3D space and maximize the distance between unmatched pixel embeddings.

This encourages the network to learn pixel embeddings to be invariant to views, which

is a non-trivial task, as two rendered views of the same shape may look quite different,

consisting of different contexts and scales. We use InfoNCE [168] as the self-supervision

loss. Given two rendered images (V i and V j) from the same shape X and pairs of matching

pixels p and q, the InfoNCE loss is defined as:

`ssl(Φ(V i),Φ(V j)) =

−
∑

(p,q)∈M

log
exp(Φ(V i)p ·Φ(V j)q/τ)∑

(.,k)∈M exp(Φ(V i)p ·Φ(V j)k/τ)

(7.2)

where Φ(V i)p is the embedding of pixel p in view i, M is the set of paired pixels between

two views that correspond to the same points in 3D space, and the temperature τ = 0.07 in

our experiments. We use two views that have at least 15% overlap. The output Φ(V i)p and

Φ(V j)q of the embedding module are normalized to a unit hyper-sphere. Pairs of matching

pixels are treated as positive pairs. The above loss also requires sampling of negative pairs.
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Given the matching pixels (p, q) ∈M from V i and V j respectively, for each pixel p from

the first view, the rest of the pixels k 6= q appearing in M and belonging to the second view,

yield the negative pixel pairs (p, k).

7.3.2 Semantic segmentation of 3D shapes

In the fine-grained shape segmentation stage, the network learns to predict pixel level

segmentation labels. Once the embedding module is pre-trained using the self-supervised

approach, it is further fine-tuned in the segmentation stage, using a small labeled shape set

Xl to compute a supervised loss, as follows:

min
Φ,Θ

λLssl + Lsl, where (7.3)

Lsl = E
(X,Y )∼Xl

[
E

(V i,Li)∈R(X,Y )
`sl
(
Li,Θ ◦Φ(V i)

)]
(7.4)

where Θ is the segmentation module, λ is a hyper-parameter set to 0.001, and `sl is the

semantic segmentation loss implemented using cross-entropy loss applied to each view of

the shape separately. R(X, Y ) is the set of renderings for shape X and its 3D label map

Y . Li represents the projected labels from the 3D shape for view V i. Since the labeled

set is much smaller than the unlabeled set, the network could overfit to the small set. To

avoid this over-fitting during the fine-tuning stage, we use the self-supervision loss Lssl as

an auxiliary loss along with supervision loss Lsl as is shown in Eq. 7.3. In Table 7.5 we

show that incorporating this regularization improves the performance.

During inference, we render multiple overlapping views of the 3D shape, and segment

each view. The per-pixel segmentation labels are then projected back onto the surface. We

use ray-tracing to encode the triangle index of the mesh to which each pixel of the rendered

view corresponds to. To aggregate the segmentation labels from different views for each

triangle of the mesh, one option is to use majority-voting. An illustration of the process is

shown in Fig. 7.2. However, not all views should be allowed to vote equally towards the
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final segmentation label for each triangle, as some views are ambiguous and are not suitable

to recognize a particular part of the shape. We instead define a weighted voting scheme

based on the average entropy of the probability distribution predicted by the network for a

view. More specifically, a weight W i = (1−
∑

p∈F H
i,p/|F |)γ is given to the view i, where

F is the set of foreground pixels, H is the entropy of the probability distribution predicted

by the network at pixel p, and γ is a hyperparameter set to 20 in our experiments. More

weight is given to the view with less entropy. Consequently, for each triangle t on the mesh

of the 3D shape, the label is predicted as follows:

lt = arg max
c∈C

∑
i∈I,p∈t

W iP (i,p) (7.5)

where I is the set of views where the triangle t is visible, P (i,p) is the probability

distribution of classes at a pixel p ∈ t in view i, and C is the set of segmentation classes.

7.3.3 Implementation details

The embedding module Φ is implemented as the DeepLabV3+ network [31] originally

proposed for image segmentation with ResNet-50 backbone. We add extra channels in the

first layer to incorporate depth and normal maps. Specifically, it takes a K-channel image

(V i) as input of size H ×W ×K and outputs Φ(V i) per pixel features of size H ×W × 64,

where the size of pixel embedding is 64. In the second stage, we add a segmentation head (a

2D convolutional layer with a softmax) on top of the pixel embedding network to produce

per-pixel semantic labels. Additional architecture details are provided in the Appendix.

To generate the dataset for the self-supervision stage, we start by placing a virtual camera

at 2 unit radius around the origin-centered and unit normalized mesh. We then render a fixed

number of images by placing the camera at uniform positions and adding random small

perturbations in the viewing angle and scale. In practice, we use approximately 90 rendered

images per shape to cover most of the surface area of the shapes. We also render depth and

normal maps for each view. Normal maps are represented in a global coordinate system.
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Figure 7.3: Examples from datasets used in our experiments. Left: RenderPeople [5]
dataset. Right: PartNet [159] dataset

Depth maps are normalized within each view. We use ray tracing to record the triangle index

to which each pixel corresponds to and also the point-of-hit for each pixel. This helps in

identifying correspondences between two views of the same shape. More information is

provided in the Appendix. We will release our code for full reproducibility.

7.4 Experiments and results

7.4.1 Dataset

We use the following datasets in our experiments, samples from which are visualized in

Figure 7.3. The license information is provided in the Appendix.

7.4.1.0.1 PartNet [159]. This dataset provides fine-grained semantic segmentation an-

notation for various 3D shape categories, unlike the more coarse-level shape parts in the

ShapeNet-Part dataset. We use 17 categories from “level-3”, which denotes the finest level

of segmentation. On average the categories contain 16 parts, ranging from 4 for the Display

category, to 51 for Table category. For training in the few-shot framework, we use the entire

training and validation set as the self-supervision dataset Xu, and select k shapes from the

train set as labeled dataset Xl for the fine-tuning stage. Note that we provide experiments

on three fine-grained categories (Chair, Table and Lamp) of PartNet in the Appendix. as

described in Section 7.4.5.
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7.4.1.0.2 RenderPeople [5]. This dataset contains 1000 human textured models repre-

sented as triangle meshes in two poses. We use 936 shapes of them for self-supervision.

We label the remaining 64 shapes with 13 different labels, while focusing more on facial

semantic parts. The 64 labeled shapes consist of 32 different identities in 2 poses. We

randomly split the 32 identities into 16 and 16, so that we get 32 shapes as the labeled

training set, and 32 shapes as the test set for evaluation. More details of the labeling and

individual semantic parts are provided in the Appendix.

7.4.1.0.3 ShapeNet-Part [254]. We also show experiments on ShapeNet-Part dataset in

the Appendix where we outperform previous works on class-average mIOU metric.

7.4.2 Experiment settings

7.4.2.0.1 Segmentation using limited labeled shapes. We pre-train our 2D embedding

network and fine-tune it with a segmentation head using k labeled shapes. During fine-

tuning, each shape is rendered from 86 different views. We render an extra 10 images for the

RenderPeople dataset that focuses more on details of facial regions. Each view consists of a

grayscale image for PartNet dataset and textured image for RenderPeople dataset, a normal

and a depth map for both datasets. For PartNet dataset, pre-training is done using all shape

categories and fine-tuning is done on individual category specific manner. All experiments

in this few-shot setting are run 5 times on randomly selected k labeled training shapes and

the average part mIOU is reported.

7.4.2.0.2 Segmentation using limited labeled views per shape. In this setting supervision

is available in 2D domain in the form of sparse set of labeled views per shape. Specifically,

a small number of k shapes are provided with a small number of v labeled views per shape.

For training 3D baselines, labeled views are projected to 3D mesh and corresponding points

are used for supervision. Similar to the first setting, all experiments are run 5 times on

randomly selected k labeled training shapes and the average part mIOU is reported.
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7.4.3 Baselines

We compare our method against the following baselines:

• (2D) Scratch. In this baseline, we train our 2D networks (Φ and segmentation head

Θ) directly using the small set of labeled examples, without pre-training, and apply

the same multi-view aggregation.

• (2D) ImageNet. We create a baseline in which the backbone ResNet in our embedding

network Φ is initialized with ImageNet pre-trained weights and the entire network is

fine-tuned using few-labeled examples. The first layer of ResNet trained on Imagenet

is adapted to take the extra channels (normal and depth maps) following the method

proposed in ShapePFCN [117].

• (2D) DenseCL. To compare with the 2D dense contrastive learning method we also

create a baseline using DenseCL [238]. We pre-train this method on our unlabeled

dataset Xu using their original codebase. Once this network is trained, we initialize the

backbone network with the pre-trained weights and fine-tune the entire architecture

using the available labeled set. Further details about training these baselines are in the

Appendix.

• (3D) Scratch. In this baseline, we train a 3D ResNet based on sparse convolutions

(Minkowski Engine [38]) that takes uniformly sampled points and their normals from

the surface and predicts semantic labels for each point. We train this network directly

using the small set of labeled examples.

• (3D) PointContrast. To compare with the 3D self-supervision methods, we pre-train

the above 3D ResNet (Minkowski Engine) on Xu using the approach proposed in

PointContrast [189]. The pre-trained network is later fine-tuned by adding a segmen-

tation head (a 3D convolution layer and softmax) on top to predict per-point semantic

labels. We use codebase provided by authors to train the network. Implementation

details are provided in Appendix.
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• (3D) non-learning based nearest neighbor transfer. In this baseline, for each test

shape we find nearest training shape using Chamfer distance. Then for each point in

the test shape, we find closest point on the retrieved shape and transfer labels to each

point cloud. Finally, we evaluate the performance using these transferred labels.

• (3D) Weak supervision via learned deformation. In this baseline, we use an ap-

proach proposed by Wang et al. [232] which uses learning based deformation and

transfer of labels from labeled set to unlabeled shape. We use our labeled and unla-

beled set to train this method using the code provided by the authors.

7.4.4 Visualization of learned embeddings.

ab da b c d a b c d

Figure 7.4: Visualization of learned embeddings. Given a pair of images in a) and b),
our network produces per-pixel embedding for each image. We map pixels from (b) to (a)
according to feature similarity, resulting in (c). Similarly d) is generated by transferring
texture from (a) to (b). For pixels which have similarity below a threshold are colored
red. We visualize the smoothness of our learned correspondence in the second and forth
row. Our method learns to produce correct correspondences between human subject in
different clothing and same human subject in different camera poses (left). Our approach
also finds correct correspondences between different human subjects in different poses
(right). Mistakes are highlighted using black boxes.

Our self-supervision task is based on enforcing consistency in pixel embeddings across

views for pixels that corresponds to the same point in 3D. In Figure 7.4 we visualize corre-
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spondences using our learned embeddings between human subjects from the RenderPeople

dataset in different costumes and poses. The smoothness and consistency in correspondences

implies that the network can be fine-tuned with few labeled examples and still perform well

on unseen examples.

Methods Mean Fau. Vase Earph. Knife Bed Bot. Dishw. Clock Door Micro. Fridge Stor.F. Trash Dis
# semantic parts 12 6 10 10 15 9 7 11 5 6 7 24 11 4
(3D) NN transfer 24.4 22.7 23.3 22.7 17.6 14.1 24.6 31.4 16.6 20.1 30.0 25.1 11.5 22.3 60.4
(3D) NN transfer (aniso ) 25.7 22.4 29.0 23.7 17.9 14.3 29.3 34.1 13.2 19.2 31.1 26.6 15.7 23.8 59.5
(2D) Scratch 32.0 29.9 31.5 32.4 25.0 27.3 30.5 34.1 19.2 26.7 35.1 26.8 19.3 33.6 76.4
(2D) ImageNet 32.8 30.1 34.5 33.1 23.8 29.2 30.8 32.9 20.1 28.1 36.1 27.5 19.6 34.7 78.7
(2D) DenseCL [238] 34.2 31.4 35.4 33.6 22.7 30.8 33.7 36.7 19.7 28.9 41.9 30.2 21.2 34.7 78.3
(3D) Scratch 30.3 27.7 28.8 28.4 19.8 24.5 25.8 39.4 15.9 24.3 37.7 30.9 23.5 30.0 67.8
(3D) Deformation [232] 27.5 28.4 27.2 24.7 20.6 12.4 34.7 30.9 17.4 26.1 38.8 24.6 14.2 21.0 63.8
(3D) PointContrast [189] 34.1 29.0 35.8 31.0 25.6 27.8 32.5 39.9 22.8 29.1 41.3 32.5 25.2 31.1 73.4
(2D+3D) MVDECOR 35.9 31.1 39.1 34.8 25.2 32.4 39.2 40.0 20.7 28.7 44.3 29.8 22.6 36.3 78.2

Table 7.1: Few-shot segmentation on partnet dataset with limited labeled shapes. 10
fully labeled shapes are provided for training. Evaluation is done on test set of PartNet
using mean part-iou metric (%). Training is done on each category separately and results
are reported by averaging over 5 random runs.

Methods Mean Fau. Vase Earph. Knife Bed Bot. Dishw. Clock Door Micro. Fridge Stor.F. Trash Dis
# semantic parts 12 6 10 10 15 9 7 11 5 6 7 24 11 4
(2D) Scratch 25.9 21.7 25.2 26.1 19.3 19.8 25.0 27.3 16.6 25.0 27.9 22.3 13.2 24.2 68.7
(2D) ImageNet 27.1 23.2 27.9 28.1 20.1 21.2 25.4 28.2 16.6 25.6 29.3 23.4 12.6 27.4 70.1
(2D) DenseCL [238] 28.9 23.9 31.3 29.0 21.3 22.4 28.9 29.6 16.4 27.4 33.6 25.0 15.9 28.4 71.9
(3D) Scratch 17.1 14.8 17.6 16.4 12.1 8.2 15.7 19.0 7.7 20.7 20.9 15.8 6.8 10.6 52.9
(3D) PointContrast [189] 28.4 22.3 32.5 28.6 21.2 18.9 25.9 31.3 18.9 28.5 31.4 24.8 15.5 25.8 72.1
(2D+3D) MVDECOR 30.3 25.5 33.7 31.6 22.4 24.9 31.7 31.0 16.2 25.8 35.7 25.6 17.0 31.4 71.2

Table 7.2: Few-shot segmentation on PartNet dataset with limited labeled 2D views.
With 10 shapes, each containing v = 5 randomly selected labeled views provided for
training. Evaluation is done on test set of PartNet using mean part-iou metric (%). Training
is done on each category separately and results are reported by averaging over 5 random
runs.

7.4.5 Few-shot segmentation on PartNet

7.4.5.0.1 k fully labeled shapes. Table 7.1 shows results using the part mIOU metric on

few-shot semantic segmentation on PartNet dataset using k = 10 fully labeled shapes. We

first start with a baseline that transfers labels labels from training set to test set by retrieving

a training shape most similar to a test shape using Chamfer distance. We create two versions

of this baseline–1) without any deformation of shapes and 2) with anisotropic scaling to

unit length in all dimensions of shapes. The anisotropic scaling leads to slight improvement
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Methods k=30, v=all k=30, v=5
Mean Chair Table Lamp Mean Chair Table Lamp

# semantic labels 39 51 41 39 51 41
(2D) Scratch 13.7 20.8 10.1 10.3 10.6 15.2 7.3 9.2
(2D) Imagenet 13.7 20.4 9.9 10.8 11.4 16.4 7.7 10.1
(2D) DenseCL [238] 15.7 22.6 11.7 12.6 12.0 17.1 8.5 10.4
(3D) Scratch 3d 11.5 17.8 8.0 8.7 6.3 10.1 4.5 4.3
(3D) Deformation [232] 6.5 8.4 4.9 6.1 - - - -
(3D) Pointcontrast [189] 14.5 23.0 10.8 9.8 11.8 20.4 7.8 7.1
(2D+3D) Ours 16.6 25.3 12.9 11.7 12.8 19.3 9.8 9.3

Table 7.3: Few-shot segmentation on the PartNet dataset. Left: 30 fully labeled shapes
are provided for training. Right: 30 shapes are used for training, each containing v = 5
randomly selected labeled views. Evaluation is done on test set of PartNet using mean
part-iou metric (%) and results are reported by averaging over 5 random runs.

over un-scaled version. This baseline performs significantly worse in comparison to training

a network from scratch. This shows that a part-agnostic nearest-neighbor transfer is not

sufficient to get good performance in fine-grained semantic segmentation under few-shot set-

ting. Our method performs better than the network trained from scratch by 4% (part mIOU)

showing the effectiveness of our self-supervision approach. Our architecture initialized with

ImageNet pre-trained weights, improves performance over training from scratch, implying

pre-training on large labeled datasets is helpful even when the domain is different. The

DenseCL baseline, which is trained on our dataset, improves performance over ImageNet

pre-trained weights, owing to the effectiveness of contrastive learning at instance level and

at dense level. Interestingly, 2D training from scratch performs better than 3D training

from scratch. The learned deformation based alignment approach [232] performs worse

because aligning shapes of different topology and structure does not align semantic parts

well. Furthermore, alignment is agnostic to the difference in the set of fine-grained semantic

parts between shapes. The 3D sparse convolution network pre-trained using point contrastive

learning on our dataset and fine-tuned with few labeled shapes performs better than all

previous baselines. Finally our approach, that uses dense contrastive learning at pixel level

outperforms all baselines.

7.4.5.0.2 Sparse labeled 2D views. Table 7.2 shows the results on few-shot semantic

segmentation on PartNet dataset using sparse 2D views for supervision. Here, the DenseCL
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Input GTScratch 2D Imagenet DenseCL Scratch 3D PointContrast Ours

Figure 7.5: Visualization of predicted semantic labels on Renderpeople dataset in few-
shot setting when k = 5 fully labeled shapes are used in fine-tuning. We visualize the
predictions of all baselines. Our method produces accurate semantic labels for 3D shapes,
even for small parts such as ears and eyebrows.

baseline outperforms training from scratch and the ImageNet initialized network. DenseCL

also outperforms the 3D PointContrast baseline, showing the effectiveness of 2D architec-

tures and 2D self-supervision. Finally, our approach outperforms all baselines.

Note that evaluation on Chairs, Lamps and Tables categories is shown separately in

Table 7.3 with k = 30, because our randomly selected k = 10 shapes do not cover all the

part labels of these classes. In this setting our approach outperforms the baselines.

7.4.6 Few-shot segmentation on RenderPeople

To evaluate our method on the textured dataset, we use the RenderPeople dataset. We

use the same set of 2D and 3D baselines as descrived in Section 7.4.3. Note that, we provide

color and normal with point cloud input to 3D Scratch and 3D PointContrast. In addition to

the settings described in S7.4.2, we further analyze the effect of different inputs given to the

network, i.e. when only RGB images are used as input to the network for self-supervision

and fine-tuning, and when both RGB images and geometry information (normal + depth

maps) are available for self-supervision and fine-tuning. We train all baselines in these two

120



Methods RGB RGB+Geom.
k=5, v=all k=10, v=all k=5,v=3 k=10,v=3 k=5, v=all k=10, v=all k=5,v=3 k=10,v=3

(2D) Scratch 50.2 60.5 38.7 46.3 55.3 62.6 40.6 50.4
(2D) ImageNet 58.8 67.6 48.9 58.1 55.3 63.7 44.3 51.9

(2D) DenseCL [238] 58.3 66.8 46.5 55.5 56.0 64.0 31.0 41.5
(3D) Scratch - 48.1 - 26.1 35.0 - 14.5 -

(3D) PointContrast [189] - 61.3 - 56.7 53.0 - 48.5 -
(2D+3D) MVDECOR 67.5 73.8 59.6 67.4 58.8 65.0 50.3 55.1

Table 7.4: Few-shot segmentation on RenderPeople dataset. We evaluate the segmen-
tation performance using part mIOU metric. We experiment with two kinds of input, 1)
when both RGB+Geom. (depth and normal maps) are input and 2) when only RGB is input
to the network. We evaluate all methods when k = 5, 10 fully labeled shapes are used
for supervision and when k = 5, 10 shapes with 3 2D views are available for supervision.
MVDECOR consistently outperform baselines on all settings.

settings, except 3D baselines that take geometry by construction. The results are shown in

Table 7.4.

7.4.6.0.1 RGB+Geom. In the first setting when RGB is used as input along with geometry

information (normal + depth), our approach outperforms all the baselines, with 3.5% and

9.7% improvement on training from scratch when only k = 5 labeled shapes are given and

when k = 5 shapes with v = 3 views are given for supervision respectively. We use only 3

views for RenderPeople dataset because of its simpler topology in comparison to 5 views

for PartNet . The ImageNet pre-trained model, which is modified to take depth and normal

maps as input performs similar to training from scratch, that implies that the domain shift

is too large between ImageNet and our dataset. DenseCL applies dense correspondence

learning at coarse grid and hence does not perform well in the dense prediction task when

only a few labeled examples are given.

7.4.6.0.2 RGB only. In the second setting, when only RGB image is input to the network,

MVDECOR gives 17.3% and 20.9% improvement over training from scratch when only

k = 5 labeled shapes are given and when k = 5 shapes with v = 3 views are are given for

supervision respectively. The ImageNet and DenseCL both perform better than training from

scratch, including their counterpart which takes both RGB+geometry as input. MVDECOR

with only RGB as input also performs significantly better than its RGB+geometry counter-
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Method RGB+Geom. RGB
MVDECOR w/o closeup views 51.6 57.4
MVDECOR w/o reg. 58.0 67.2
MVDECOR 58.8 67.5

Table 7.5: Effect of selection of renderings and regularization on RenderPeople dataset.
MVDECOR without closeup views used for pre-training and fine-tuning performs worse than
when closeup views are used. Our regularization term in the loss also shows improvement.

a db c

Figure 7.6: View aggregation. Given the input in (a), MVDECOR produces 2D labels (b)
which can further be improved by multi-view aggregation (c) as is highlighted in boxes and
produces segmentation close to the ground truth (d).

part. We expect this behaviour because of the following: first when geometry is also used as

input to the network, the pre-training task focuses more on geometry to produce consistent

embeddings, as is shown in Figure 7.4, where consistent embeddings are produced between

the same human subject in two different costumes. However, when only RGB is input

to the network, the pretraining task focuses on RGB color only to learn correspondences.

Second, the semantic segmentation of human models requires high reliance on RGB features

compared to geometry, and the additional geometry input tends to confuse the pre-trained

network.

Figure 7.5 shows qualitative results of different methods. We consistently outperform

all baselines and produce correct segmentation for tiny parts such as eyes, ears and nose.

Refer to the Appendix for more qualitative visualization. In Figure 7.6 we show the effect

of multi-view aggregation on 3D segmentation.

7.4.6.0.3 Regularization. During fine-tuning stage we use an extra regulrization term

λLssl applied on shapes from Xu, to prevent network from overfitting on small training set
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Xl as described in Section 7.3.2. In Table 7.5 we show that regularization improves our

performance on RenderPeople dataset.

7.4.6.0.4 Effect of view selection. We also analyze the effect of view selection. In our

previous experiment, we select views by placing camera farther away from the shape to

obtain a full context along with placing the camera close to the shape to get finer details.

Now we remove close-up views during pre-training and fine-tuning stage and report results

in Table 7.5. We observe that closeup views are important for accurate segmentation of small

parts. Finally, we also observe that on RenderPeople dataset, the segmentation performance

improves as more views are provided during inference time. Specifically, as number of

views are increased from 5 to 96, the segmentation performance improves from 54.7 to 58.8.

7.5 Conclusion

In this paper, we present MVDECOR, a self-supervision method that learns a multi-view

representation for 3D shapes with geometry consistency enforced across different views. We

pre-train our network with a multi-view dense correspondence learning task, and show that

the learned representation outperforms state-of-art methods in the experiments of few-shot

fine-grained part segmentation, giving most benefits for textured 3D shapes.

7.5.0.0.1 Limitations. Our method relies on 2D renderings of 3D shapes, thus a few

surface regions may not be covered due to self-occlusion. In this case, the label predictions

in these regions are unreliable. Our self-supervision also requires rendering several views of

shapes to make the representations view invariant, which increases the computational cost.

Our view selection during pre-training and fine-tuning stage is heuristic-based and can be

improved by a learnable approach [82]. A useful future avenue is to combine our approach

of 2D correspondence learning with 3D correspondence learning [189] to obtain the best

of both worlds. MVDECOR may also open up other potential supervision sources, such as

reusing existing image segmentation datasets to segment 3D shapes, exploiting motion in

videos to provide correspondence supervision for pre-training.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

8.1 Conclusions

This thesis attempted to answer two questions. 1) How to design neural network

architectures to decompose 3D shapes into programs and surface patches? 2) Does the

ability to decompose the 3D shape into parts help learn useful 3D shape representation?

Below, I discuss the conclusions from the research conducted in each of the two directions.

Then I proceed with future work extensions.

8.1.1 Learning to decompose 3D shapes

We first designed a neural network architecture that decomposes shapes into CSG

programs. We demonstrated that the model generalizes across domains, including logos, 2D

silhouettes, and 3D CAD shapes. However, not all shapes are suitable to be approximated

by CSG programs. Designers often use parametric surface patches while modeling shapes.

Towards that end, we presented a neural network architecture to reconstruct point clouds by

predicting geometric primitives and surface patches common in CAD design. Our method

effectively marries 3D deep learning with CAD modeling practices.

Our learning-based approaches to shape parsing outperform previous non-learning and

learning-based methods, resulting in predictions that are robust and incorporate human

shape-decomposition priors. Our architecture’s predictions are editable, interpretable and

compact. Modelers can refine our results based on standard CAD modeling operations,

opening several applications in computer graphics.
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8.1.2 Learning representation for 3D shape understanding

To alleviate the need of large labeled set used for training neural networks, we pro-

posed three approaches to learn shape representations useful for downstream semantic

segmentation tasks.

We presented a method to exploit existing part hierarchies and tag metadata associated

with 3D shapes found in online repositories to pre-train deep networks for shape segmenta-

tion. These part-hierarchies are often inconsistent as they vary depending on the expertise

and goals of the designers creating models. To overcome this problem, we proposed a

simple self-supervision task for learning point embeddings – learning to fit an unlabeled

point-cloud using a set of geometric primitives such as ellipsoids and cuboids. We provide

an end-to-end trainable framework for incorporating this task into a standard network ar-

chitectures for point cloud segmentation. Finally, in order to learn features for fine-grained

semantic segmentation of textured shapes, we proposed a self-supervision method that

learns a multi-view representation for 3D shapes with geometry consistency enforced across

different views. Our approach outperforms previous state-of-the-art approaches to few-shot

semantic segmentation of 3D shapes, which helps in reducing manual and monetary cost of

shape annotations.

8.2 Future works

Below we present two possible extensions of the work presented in this thesis.

8.2.1 General program induction for objects and scenes.

Man-made objects that we interact with on a daily basis often are created using CAD

software. Given a scan taken of an object, we would like to get a program that can reconstruct

the same. Often shapes are made using a combination of many graphics modelling tools–

a) polygonal modeling operations (e.g, extrusions, lofting, revolving, boolean operations,

sculpting, deformations), b) parametric curves and surfaces, and c) subdivision modeling.
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Existing approaches have targeted reverse-engineering one of the above modelling tools at

a time. A combination of all these modelling tools can create most objects, providing us

with a complete and versatile representation of our surroundings. We will encounter several

challenges while solving this problems. First, predicting all these modelling instructions

together requires development of domain-specific languages capable of handling variety

of modeling tools and development of datasets with rich set of modeling instructions for

supervision [143]. Second, several modelling operations are non-differentiable, which

makes it challenging to include them in the computation graph of modern neural networks

and learn using gradient descent. A differentiable approximation [41] of these modelling

instructions will make learning these instructions efficient within the neural network pipeline.

Finally, producing programs for shapes requires predicting discrete and continuous entities,

and often requires efficient search procedures in large search space [53]. Recent advances in

continuous relaxation of discrete optimization can help to tackle these problems.

Program induction at scene level opens up applications in the efficient storage of large

scene and ease of editing within augmented reality. This helps in creating a form of “version-

control” where diffs are calculated using elements of the programs. However, program

induction at the level of scene is more challenging because of the added complexity by

having several objects. The solution to this problem perhaps lie in the bottom-up approach

where outputs from an object detector are combined in hierarchical fashion to reconstruct

the scene.

8.2.2 Unified representation learning for dynamic surroundings.

Recently, we have seen excellent progress on representation learning in the image domain

[89, 248], giving a superior performance on many image-based tasks. Similarly, several

self-supervision methods [189, 203] in 3D (scanned point clouds) have also alleviated the

reliance on a large scale labelled dataset. Notice that, scans of scenes and corresponding high-

resolution images provide complementary information–3D scans provide sparse information
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about the scene, albeit in the native 3D domain. Whereas, high-resolution 2D images better

encode texture information of the scene but are devoid of 3D awareness. If a scene is

dynamic, then time-varying scans are needed to capture the dynamics of the scene. These

time-stamped scans provide motion information, along with non-rigid motion often hints

at part segmentation. Furthermore, the process of humans perceiving the surrounding also

involves the perception of sounds. Oftentimes, human activities produce sound and are useful

for humans to navigate and interact with their surroundings. Thus learning representation

for geometry, motion, texture and sound jointly provides a holistic representation of 3D

scene. Learning these representations requires innovations in network architectures, dataset,

training losses and optimization.
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APPENDIX A

NEURAL SHAPE PARSERS FOR CONSTRUCTIVE SOLID
GEOMETRY

In this supplementary material, we include the following topics in more detail: a)

synthetic dataset creation in the 2D and the 3D case, b) neural network architecture used in

our experiments, c) more qualitative results on our test dataset.

A.1 Dataset

A.1.1 Synthetic 2D shapes.

We use the grammar described in the Section 4.1 to create our 2D dataset. The dataset is

created by randomly generating programs of lengths 3 to 13 following the grammar. While

generating these programs we impose additional restrictions as follows: a) Primitives must

lie completely inside the canvas, b) Each operation changes the number of ON pixels by at

least a threshold set to 10% of sum of pixels in two shapes. This avoids spurious operations

such as subtraction between shapes with little overlap. c) The number of ON pixels in the

final image is above a threshold. d) The previous rules promotes programs with the union

operation. To ensure a balanced dataset we boost the probabilities of generating programs

with subtract and intersect operations. Finally we remove duplicates. We only use upright,

equilateral triangles and upright squares. Note that locations (L) are discretized to lie on

square grid with spacing of 8 units and size (R) are discretized with spacing of 4 units.

A.1.2 Synthetic 3D shapes.

We use the grammar described in the Section 4.1 to create our 3D dataset. While

generating shapes we followed a strategy similar to the 2D case. For 3D case, we only use
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Layers Output
Input image + stack 64× 64× (k + 1)
Dropout(Relu(Conv: 3× 3, 1→ 8)) 64× 64× 8
Max-pool(2× 2) 32× 32× 8
Dropout(Relu(Conv: 3× 3, 8→ 16)) 32× 32× 16
Max-pool(2× 2) 16× 16× 16
Dropout(Relu(Conv: 3× 3, 16→ 32)) 16× 16× 32
Max-pool(2× 2) 8× 8× 32
Flatten 2048

Table A.1: Encoder architecture for 2D shapes experiments. For StackCSGNet k = 4
and for CSGNet k = 0.

programs of up to length 7 (up to 4 shape primtives and upto 3 boolean operations). Note

that the cube and cylinder are upright. The dataset contains 64× 64× 64 voxel-grid shapes

and program pairs. Also note that locations (L) are discretized to lie on cubic grid with

spacing of 8 units, and size (R) and height (H) are discretized with spacing of 4 units.

A.1.3 CSG execution engine.

We implemented a CSG engine that reads the instructions one by one. If it encounters

a primitive (e.g. c(32, 32, 16)) it draws it on an empty canvas and pushes it on to a

stack. If it encounters an operation (e.g. union, intersect, or subtract) it pops the

top two canvases on its stack, applies the operation to them, and pushes the output to the

top of the stack. The execution stops when no instructions remain at which point the top

canvas represents the result. The above can be seen as a set of shift and reduce operations in

a LR-parser [123]. Figure A.1 describes execution procedure to induce programs for 3D

shapes.

A.2 Network Architecture

A.2.1 Architecture for 2D shape experiments.

Table A.1 shows the CNN architecture used as the encoder. The input I is an image of

size 64× 64 concantenated with top-k elements of stack St of size 64× 64× k. Note that
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Figure A.1: Detailed execution procedure followed by an induced CSG program in a
characteristic 3D case. The input is a voxel based representation of size 64× 64× 64. The
RNN decoder produces a program, which can be executed following the grammar described
in the Section A.1, to give the output shown at the bottom. The user-level program is shown
for illustration. On the right side is shown a parse tree corresponding to the execution of the
program.

stack is input to our StackCSGNet architecture and no stack is input to CSGNet architecture

where k = 0. The output Φ(I) is a vector of size 2048. Table A.2 describes the architecture

used in the decoder. The RNN decoder is based on a GRU unit that at every time step takes

as input the encoded feature vector and previous instruction encoded as a 128 dimensional
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Index Layers Output
1 Input shape encoding 2048
2 Input previous instruction 401
3 Relu(FC (401→ 128)) 128
4 Concatenate (1, 3) 2176
5 Drop(GRU (hidden dim: 2048)) 2048
6 Drop(Relu(FC(2048→ 2048))) 2048
7 Softmax(FC(2048→ 400)) 400

Table A.2: Decoder architecture for 2D shapes experiments. The same architecture is
used for all both CSGNet and StackCSGNet in our experiments in the Section 4.3.1. FC:
Fully connected dense layer, Drop: dropout layer with 0.2 probability. Dropout on GRU are
applied on outputs but not on recurrent connections.

vector obtained by a linear mapping of the 401 dimensional one-hot vector representation.

At first time step, the previous instruction vector represents the START symbol. Embedded

vector of previous instruction is concantenated with Φ(I) and is input to the GRU. The

hidden state of GRU is passed through two dense layer to give a vector of dimension 400,

which after softmax layer gives a probability distribution over instructions. The output

distribution is over 396 different shape primitives, 3 operations (intersect, union

and subtract) and a STOP. We exclude the START symbol from the output probability

distribution. Note that the circle, triangle or square at a particular position in the image and

of a particular size represents an unique primitive. For example, c(32, 32, 16), c(32, 28, 16),

s(12, 32, 16) are different shape primitives.

A.2.2 Architecture for 3D shape experiments.

The input I is a voxel representation of 3D shape of size 64× 64× 64 concantenated

with top-k elements of stack St of size 64 × 64 × 64 × k. Note that stack is input to our

3D-StackCSGNet architecture and no stack is input to 3D-CSGNet architecture where

k = 0. The outputs is an encoded vector Φ(I) of size 2048, as shown in the Table A.3.

Similar to the 2D case, at every time step, GRU takes as input the encoded feature vector

and previous ground truth instruction. The previous ground truth instruction is a 6636-
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Layers Output
Input Voxel + stack 64 × 64 × 64 × (k + 1)
Relu(Conv3d: 4 × 4 × 4, 1→ 32) 64 × 64 × 64 × 32
BN(Drop(Max-pool(2 × 2 × 2))) 32 × 32 × 32 × 32
Relu(Conv3d: 4 × 4, 32→ 64) 32 × 32 × 32 × 64
BN(Drop(Max-pool(2 × 2 × 2))) 16 × 16 × 16 × 64
Relu(Conv3d: 3 × 3, 64→ 128)) 16 × 16 × 16 × 128
BN(Drop(Max-pool(2 × 2 × 2))) 8 × 8 × 8 × 128
Relu(Conv3d: 3 × 3, 128→ 256)) 8 × 8 × 8 × 256
BN(Drop(Max-pool(2 × 2 × 2))) 4 × 4 × 4 × 256
Relu(Conv3d: 3 × 3, 256→ 256)) 4 × 4 × 4 × 256
BN(Drop(Max-pool(2 × 2 × 2))) 2 × 2 × 2 × 256
Flatten 2048

Table A.3: Encoder architecture for 3D shape experiments. Drop: dropout layer,
BN: batch-normalization layer and Drop: dropout layer with 0.2 probability. For 3D-
StackCSGNet k = 1 and for 3D-CSGNet k = 0.

Index Layers Output
1 Input shape encoding 2048
2 Input previous instruction 6636
3 Relu(FC(6636→ 128)) 128
4 Concatenate (1, 3) 2176
5 Drop(GRU (hidden dim: 1500)) 1500
6 Drop(Relu(FC(1500→ 1500))) 1500
7 Softmax(FC(1500→ 6635)) 6635

Table A.4: Decoder network architecture for 3D shapes experiments. FC: Fully con-
nected dense layer, Drop: dropout layer with 0.2 probability. Dropout on GRU are applied
on outputs but not on recurrent connections. Same decoder is used for both 3D-CSGNet and
3D-StackCSGNet.
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dimensional (also includes the start symbol) one-hot vector, which gets converted to a

fixed 128-dimensional vector using a learned embedding layer. At first time step the last

instruction vector represents the START symbol. Embedded vector of previous instruction is

concatenated with Φ(I) and is input to the GRU. The hidden state of GRU is passed through

two dense layers to give a vector of dimension 6635, which after Softmax layer gives a

probability distribution over instructions. The output distribution is over 6631 different

shape primitives, 3 operations (intersect, union and subtract) and a STOP. We

exclude the START symbol from the output probability distribution. Similar to 2D case,

cu(32, 32, 16, 16), cu(32, 28, 16, 12), sp(12, 32, 16, 28) are different shape primitives. Table

A.4 shows details of decoder.

A.3 Qualitative Evaluation

In this section, we show more qualitative results on different dataset. We first show

peformance of our CSGNet trained using only Supervised learning on 2D synthetic dataset,

and we compare top-10 results from nearest neighbors and and top-10 results from beam

search, refer to the Figure A.2 and A.3. Then we show performance of our full model

(using RL + beam search + visually guided search) on CAD 2D shape dataset, refer to the

Figure A.4 and A.5.
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Figure A.2: Qualitative evaluation on 2D synthetic dataset. In green outline is the
groundtruth, top row represent top-10 beam search results, bottom row represents top-10
nearest neighbors.
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Figure A.3: Qualitative evaluation on 2D synthetic dataset. In green outline is the
groundtruth, top row represent top-10 beam search results, bottom row represents top-10
nearest neighbors.
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Figure A.4: Performance of our full model on 2D CAD images. a) Input image, b) output
from our full model, c) Outlines of primitives present in the generated program, triangles are
in green, squares are in blue and circles are in red d) Predicted program. s, c and t are shape
primitives that represents square, circle and triangle respectively, and union, intersect
and subtract are boolean operations.
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Figure A.5: Performance of our full model on 2D CAD images. a) Input image, b) output
from our full model, c) Outlines of primitives present in the generated program, triangles are
in green, squares are in blue and circles are in red d) Predicted program. s, c and t are shape
primitives that represents square, circle and triangle respectively, and union, intersect
and subtract are boolean operations.
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APPENDIX B

PARSENET: PARAMETRIC SURFACE FITTING FOR 3D POINT
CLOUDS

In our Supplementary Material, we:

• provide background on B-spline patches;

• provide further details about our dataset, architectures and implementation;

• evaluate the robustness of SPLINENET as a function of point density;

• evaluate our approach for reconstruction on the ABCPARTSDATASET;

• show more visualizations of our results; and

• evaluate the performance of our approach on the TraceParts dataset [139].

B.1 Background on B-spline patches.

A B-spline patch is a smoothly curved, bounded, parametric surface, whose shape is

defined by a sparse grid of control points C = {cp,q}. The surface point with parameters

(u, v) ∈ [umin, umax]× [vmin, vmax] is given by:

s(u, v) =
P∑
p=1

Q∑
q=1

bp(u)bq(v)cp,q (B.1)

where bp(u) and bq(v) are polynomial B-spline basis functions [57].

To determine how the control points affect the B-spline, a sequence of parameter values,

or knot vector, is used to divide the range of each parameter into intervals or knot spans.
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Figure B.1: Histogram of surface patches in ABCPARTSDATASET. Left: shows his-
togram of number of segments and Right: shows histogram of primitive types.

Whenever the parameter value enters a new knot span, a new row (or column) of control

points and associated basis functions become active. A common knot setting repeats the

first and last ones multiple times (specifically 4 for cubic B-splines) while keeping the

interior knots uniformly spaced, so that the patch interpolates the corners of the control point

grid. A closed surface is generated by matching the control points on opposite edges of the

grid. There are various generalizations of B-splines e.g., with rational basis functions or

non-uniform knots. We focus on predicting cubic B-splines (open or closed) with uniform

interior knots, which are quite common in CAD [57, 61, 175, 194].

B.2 Dataset

The ABCPARTSDATASET is a subset of the ABC dataset obtained by first selecting

models that contain at least one B-spline surface patch. To avoid over-segmented shapes,

we retain those with up to 50 surface patches. This results in a total of 32k shapes, which

we further split into training (24k), validation (4k), and test (4k) subsets. Figure B.1 shows

the distribution of number and type of surface patches in the dataset.

B.3 Implementation Details of PARSENET

B.3.0.0.1 Architecture details. Our decomposition module is based on a dynamic edge

convolution network [239]. The network takes points as input (and optionally normals)
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and outputs a per point embedding Y ∈ RN×128 and primitive type T ∈ RN×6. The layers

of our network are listed in Table B.1. The edge convolution layer (EdgeConv) takes as

input a per-point feature representation f ∈ RN×D, constructs a kNN graph based on this

feature space (we choose k = 80 neighbors), then forms another feature representation

h ∈ RN×k×2D, where hi,j =
[
fi, fi − fj

]
, and i,j are neighboring points. This encodes

both unary and pairwise point features, which are further transformed by a MLP (D → D′),

Group normalization and LeakyReLU (slope=0.2) layers. This results in a new feature

representation: h′ ∈ RN×k×D′ . Features from neighboring points are max-pooled to obtain

a per point feature f ′ ∈ RN×D′ . We express this layer which takes features f ∈ RN×D and

returns features f ′ ∈ RN×D′ as EdgeConv(f , D, D′). Group normalization in EdgeConv

layer allows the use of smaller batch size during training. Please refer to [239] for more

details on edge convolution network.

SPLINENET is also implemented using a dynamic graph CNN. The network takes points as

input and outputs a grid of spline control points that best approximates the input point cloud.

The architecture of SPLINENET is described in Table B.2. Note that the EdgeConv layer in

this network uses batch normalization instead of group normalization.

B.3.1 Training details.

We use the Adam optimizer for training with learning rate 10−2 and reducing it by the

factor of two when the validation performance saturates. For the EdgeConv layers of the

decomposition module, we use 100 nearest neighbors, and 10 for the ones in SPLINENET.

For pre-training SPLINENET on SPLINEDATASET, we randomly sample 2k points from

the B-spline patches. Since ABC shapes are arbitrarily oriented, we perform PCA on

them and align the direction corresponding to the smallest eigenvalue to the +x axis. This

procedure does not guarantee alignment, but helps since it reduces the orientation variability

in the dataset. For pre-training the decomposition module and SPLINENET we augment the
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Figure B.2: Robustness analysis of SPLINENET. Left: open B-spline and Right: closed B-
spline. Performance degrades for sparse inputs (blue curve). Nearest neighbor up-sampling
of the input point cloud to 1.6K points reduces error for sparser inputs (yellow curve). The
horizontal axis is in log scale. The error is measured using Chamfer distance (CD).

training shapes represented as points by using random jitters, scaling, rotation and point

density.

B.3.2 Back propagation through mean-shift clustering.

TheW matrix is constructed by first applying non-max suppression (NMS) on the output

of mean shift clustering, which gives us indices ofK cluster centers. NMS is done externally

i.e. outside our computational graph. We use these indices and Eq. 9 to compute the W

matrix. The derivatives of NMS w.r.t point embeddings are zero or undefined (i.e. non-

differentiable). Thus, we remove NMS from the computational graph and back-propagate

the gradients through a partial computation graph, which is differentiable. This can be

seen as a straight-through estimator [196]. A similar approach is used in back-propagating

gradients through Hungarian Matching in [139]. Our experiments in Table 1 shows that

this approach for end-to-end training is effective. Constructing a fixed size matrix W will

result in redundant/unused columns because different shapes have different numbers of

clusters. Possible improvements may lie in a continuous relaxation of clustering similar to

differentiable sorting and ranking [41], however that is out of scope for our work.
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Index Layer out
1 Input N × 3
2 EdgeConv(out(1), 3, 64) N × 64
3 EdgeConv(out(2), 64, 64) N × 64
4 EdgeConv(out(3), 64, 128) N × 128
5 CAT(out(2), out(3), out(4)) N × (256)
6 RELU(GN(FC(out(5), 1024))) N × 1024
7 MP(out(6), N, 1) 1024
8 Repeat(out(7), N) N × 1024
9 CAT(out(8), out(5)) N × 1280

10 RELU(GN(FC(out(9), 512))) N × 512
11 RELU(GN(FC(out(10), 256))) N × 256
12 RELU(GN(FC(out(11), 256))) N × 256
13 Embedding=Norm(FC(out(12), 128)) N × 128
14 RELU(GN(FC(out(11), 256)) N × 256
15 Primitive-Type=Softmax(FC(out(14), 6)) N × 6

Table B.1: Architecture of the Decomposition Module. EdgeConv: edge convolution,
GN: group normalization, RELU: rectified linear unit, FC: fully connected layer, CAT:
concatenate tensors along the second dimension, MP: max-pooling along the first dimension,
Norm: normalizing the tensor to unit Euclidean length across the second dimension.

B.4 Robustness analysis of SPLINENET

Here we evaluate the performance of SPLINENET as a function of the point sampling

density. As seen in Figure B.2, the performance of SPLINENET is low when the point density

is small (100 points per surface patch). SPLINENET is based on graph edge convolutions

[239], which are affected by the underlying sampling density of the network. However,

upsampling points using a nearest neighbor interpolation leads to a significantly better

performance.

B.5 Evaluation of Reconstruction using Chamfer Distance

Here we evaluate the performance of PARSENET and other baselines for the task of

reconstruction using Chamfer distance on ABCPARTSDATASET. Chamfer distance between

reconstructed points P and input points P̂ is defined as:
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Index Layer Output
1 Input N × 3
2 EdgeConv(out(1),3, 128) N × 128
3 EdgeConv(out(2),128, 128) N × 128
4 EdgeConv(out(3),128, 256) N × 256
5 EdgeConv(out(4),256, 512) N × 512
6 CAT(out(2), out(3), out(4), out(5))) N × (1152)
7 RELU(BN(FC(out(6), 1024)) N × 1024
8 MP(out(7), N, 1) 1024
9 RELU(BN(FC(out(8), 1024)) 1024
10 RELU(BN(FC(out(9), 1024)) 1024
11 Tanh(FC(out(10), 1200)) 1200
12 Control Points = Reshape(out(11), (20, 20, 3)) 20 × 20 × 3

Table B.2: Architecture of SPLINENET. EdgeConv: edge convolution layer, BN: batch
noramlization, RELU: rectified linear unit, FC: fully connected layer, CAT: concatenate
tensors along second dimension, and MP: max-pooling across first dimension

pcover =
1

|P |
∑
i∈P

min
j∈P̂
‖i− j‖2 ,

scover =
1

|P̂ |

∑
i∈P̂

min
j∈P
‖i− j‖2 ,

CD =
1

2
(pcover + scover).

Here |P | and |P̂ | denote the cardinality of P and P̂ respectively. We randomly sample 10k

points each on the predicted and ground truth surface for the evaluation of all methods.

Each predicted surface patch is also trimmed to define its boundary using bit-mapping with

epsilon 0.1 [193]. To evaluate this metric, we use all predicted surface patches instead of the

matched surface patches that is used in Section 5.3.

Results are shown in Table B.3. Evaluation using Chamfer distance follows the same

trend of residual error shown in Table 1. PARSENET and SPFN with points as input performs

better than NN and RANSAC. PARSENET and SPFN with points along with normals as

input performs better than with just points as input. By training PARSENET end-to-end and

also using post-process optimization results in the best performance. Our full PARSENET
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Method Input p cover (1× 10−4) s cover (1× 10−4) CD (1× 10−4)
NN p 10.10 12.30 11.20
RANSAC p+n 7.87 17.90 12.90
SPFN p 7.17 13.40 10.30
SPFN p+n 6.98 13.30 10.12
PARSENET p 6.07 12.40 9.26
PARSENET p+n 4.77 11.60 8.20
PARSENET + e2e + opt p+n 2.45 10.60 6.51

Table B.3: Reconstruction error measured using Chamfer distance on ABCPARTS-
DATASET. ‘e2e’: end-to-end training of PARSENET and ‘opt’: post-process optimization
applied to B-spline surface patches.

gives 35.67% and 49.53% reduction in relative error in comparison to SPFN and RANSAC

respectively. We show more visualizations of surfaces reconstructed by PARSENET in

Figure B.3.

B.6 Evaluation on TraceParts Dataset

Here we evaluate the performance of PARSENET on the TraceParts dataset, and compare

it with SPFN. Note that the input points are normalized to lie inside a unit cube. Points

sampled from the shapes in TraceParts [139] have a fraction of points not assigned to any

cluster. To make this dataset compatible with our evaluation approach, each unassigned

point is merged to its closest cluster. This results in evaluation score to differ from the

reported score in their paper [139].

First we create a nearest neighbor (NN) baseline as shown in the Section 5.3. In this,

we first scale both training and testing shape an-isotropically such that each dimension has

unit length. Then for each test shape, we find its most similar shape from the training set

using Chamfer Distance. Then for each point on the test shape, we transfer the labels and

primitive type from its closest point inR3 on the retrieved shape. We train PARSENET on

the training set of TraceParts using the losses proposed in the Section 4.2 and we also train

SPFN using their proposed losses. All results are reported on the test set of TraceParts.
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Figure B.3: Given the input point clouds with normals in the first row, we show surfaces
produced by PARSENET without post-processing optimization (second row), and full
PARSENET including optimization (third row). The last row shows the ground-truth surfaces
from our ABCPARTSDATASET.

Results are shown in the Table B.4. The NN approach achieves a high segmentation

mIOU of 81.92% and primitive type mIOU of 95%. Figure B.4 shows the NN results for

a random set of shapes in the test set. It seems that the test and training sets often contain

duplicate or near-duplicate shapes in the TraceParts dataset. Thus the performance of the

NN can be attributed to the lack of shape diversity in this dataset. In comparison, our dataset

is diverse, both in terms of shape variety and primitive types, and the NN baseline achieve

much lower performance with segmentation mIOU of 54.10% and primitive type mIOU of

61.10%.

We further compare our PARSENET with SPFN with just points as input. PARSENET

achieves 79.91% seg mIOU compared to 76.4% in SPFN. PARSENET achieves 97.39%

label mIOU compared to 95.18% in SPFN. We also perform better when both points and

normals are used as input to PARSENET and SPFN.

Finally, we compare reconstruction performance in the Table B.5. With just points as

input to the network, PARSENET reduces the relative residual error by 9.35% with respect

to SPFN. With both points and normals as input PARSENET reduces relative residual error

by 15.17% with respect to SPFN.
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Figure B.4: Nearest neighbor retrieval on the TracePart dataset We randomly select 30
shapes from the test set of TraceParts dataset and show the NN retrieval, which reveals high
training and testing set overlap. Shapes are an-isotropically scaled to unit length in each
dimension. This is further validated quantitatively in Table B.4.
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Method Input seg mIOU label mIOU
NN p 81.92 95.00

SPFN p 76.4 95.18
SPFN p + n 88.05 98.10

ParseNet p 79.91 97.39
ParseNet p + n 88.57 98.26

Table B.4: Segmentation results on the TraceParts dataset. We report segmentation and
primitive type prediction performance of various methods.

Method Input res P cover
NN p 0.0138 91.90

SPFN p 0.0139 91.70
SPFN p + n 0.0112 92.94

ParseNet p 0.0126 90.90
ParseNet p + n 0.0095 92.72

Table B.5: Reconstruction results on the TraceParts dataset. We report residual loss
and P cover metrics for various methods.
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APPENDIX C

LEARNING POINT EMBEDDING FROM SHAPE REPOSITORIES
FOR FEW SHOT SEMANTIC SEGMENTATION

C.1 Dataset

Our dataset is a subset of ShapeNetCore where we focus on 16 categories from ShapeNet

part segmentation dataset. Note that the semantic segmentation dataset contains 16.6k

shapes of these categories compared to 28k in the ShapeNet core. We first start by

downloading collada file for shapes in ShapenetCore dataset from the 3D Warehouse

website, but constraining to 16 categories mentioned above. Samples from the dataset

are shown in the Figure C.2 (left). The Collada format stores the meshes in hierarchical

structure, starting from the root node, recursively applying transformation until the leaf

nodes that correspond to different parts of the 3D shape.

Note that we only use a small number of the segmentation labels provided in the

ShapeNet segmentation benchmark for training in our few-shot segmentation experiments.

We also make sure that the there is no overlap between any of our training set (embedding

training, tag training, semantic segmentation training) and the evaluation set.

C.1.1 Generating segments from meshes.

The number of segments in meshes from Collada files can vary from 1-4000. These

range from ones where all the parts are grouped together to others where parts are vastly

over segmented. A possible way to control the number of segments is to select the depth of

the tree that gives reasonable number of segments. Lower level in the hierarchy gives smaller

number of segments as shown in Figure-3 (main paper). We select the depth of the tree such

that the number of segments are at least k, where k is the number of semantic parts present
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Figure C.1: Distribution of number of segments.

in the semantic part-segmentation dataset for that category. This is done to avoid favoring

cases where semantically different parts are merged. We further, select the depth of the tree

such that maximum number of segments is less than 500 to avoid large over-segmentation of

shape and to keep high ratio of number of points vs number of segments. Figure C.1 shows

the distribution of segments in our pruned dataset.

These meshes have inconsistent orientation, thus we preprocess these meshes to align

in a canonical orientation of the Shapenent core dataset. The alignment is done by first

sampling points from source and target meshes, then rotating the source point cloud along all

the three-axis by from 0 to 180 degrees at the interval of 30 degrees and finally by selecting

the orientation which gives least Chamfer distance between the source and the target shape

points. The coarse search is sufficient to align most models. We preprocess the meshes by

uniformly sampling 10k points from the surface using stratified sampling where sampling is

weighted by the area of the segment, i.e. we sample more points from the segments with

larger surface area in comparison to segments with smaller surface area.
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Figure C.2: Visualization of the meta data. (Left) Parts of various objects shown in
different colors. Notice that segmentations vary in their number and granularity across
instances. (Right) A word cloud of the raw tags collected from the dataset. The font size is
proportional to the square root of frequency in the dataset.

C.2 Visualization of Semantic Segmentation

Figure C.3 compares the segmentation models pretrained with Hierarchy meta data,

trained from scratch, and autoencoder pretrained for training size 4 and 8.

Ground Truth Scratch AutoEncoder Hierarchy Scratch AutoEncoder Hierarchy 
Num of train = 4 Num of train = 8

Figure C.3: Segmentation results. Visualization of segmentations produced by various
models (scratch, autoencoder, hierarchy) when the number of training shapes is 4 (Left) and
8 (Right). The boundaries between parts are better delinated (as seen in the ground truth) by
the models trained on hierarchy meta data.

150



APPENDIX D

SURFIT: LEARNING TO FIT SURFACES IMPROVES FEW SHOT
LEARNING ON POINT CLOUDS

D.0.0.0.1 Mean-shift clustering details. (1) The mean-shift clustering adapts to the com-

plexity of the shape by allowing different number of clusters based on a bandwidth parameter.

This is computed for each shape by using the average distance of each point to its 100th

neighbor in the embedding space [147]. (2) We use non-max suppression to extract cluster

centers. We start by extracting high density points that include at least one nearest neighbor

within radius b. Then we remove all points that are within the same radius and repeat until

no other high density points are left. All selected high density points in this way act as

cluster centers.

D.0.0.0.2 Signed distance field approximation. We use approximate signed distance for

ellipsoids:

S(p, s) = k1(k1 − 1)/k2 (D.1)

where s is an ellipsoid, p is the centered and re-oriented (to standard axis) coordinate of the

point at which signed distance is calculated, k1 =
√∑

i(
pi
si

)2 and k2 =
√∑

i(
pi
s2i

)2, si is the

length of the ellipsoid semi-axis in ith direction.

D.0.0.0.3 Point sampling of ellipsoids. The parametric equation of an ellipsoid is the

following:

(
x, y, z

)
=
(
a cosu sin v, b sinu sin v, c cos v

)
, (D.2)
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Figure D.1: Robustness to outliers. An example of outlier-robust fitting with our method
in contrast to MVE (minimum volume ellipsoid) that is sensitive to outliers. Our fitting
result shown in green closely fits the input points (red) while ignoring the outlier, whereas
MVE approach (blue) is sensitive to outlier.

and its inverse parameterization is:

(
v, u
)

=
(

arccos(z/c), atan2(y/b, x/a)
)
, (D.3)

where (u, v) are the parameters of the ellipsoid’s 2D parametric domain, (x, y, z) the point

coordinates, and (a, b, c) the lengths of semi-axis of the ellipsoid.

To sample the ellipsoid in a near-uniform manner, we start by creating a standard axis-

aligned and origin centered mesh using the principal axis lengths predicted by SURFIT.

Then we apply Poisson surface sampling to gather points on the surface in an approximately

uniform manner. We then compute parameters (u, v) of the sampled points using Eq. D.3.

Note that this is done outside the computation graph. We inject the computed parameters

back to the computation graph using Eq. D.2 to compute point coordinates (x, y, z) again.

These point coordinates are rotated and shifted based on the predicted axis and center

respectively.

D.0.0.0.4 Robustness of ellipsoid fitting. Fig. D.1 shows the robustness of our approach

to outliers in comparison to minimum volume ellipsoid (MVE) [56]. Our approach takes

into account the membership of the point to a cluster. For this example, we use a simple
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membership function 1/r
1
4 , where r is the distance of point from the center of the cluster and

incorporates these per-point weights to estimate the parameters of ellipsoid in a closed form

using SVD. not solve the MVE problem, rather provides an approximately fitting ellipsoid

to a cluster of points.
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APPENDIX E

MVDECOR: MULTI-VIEW DENSE CORRESPONDENCE
LEARNING FOR FINE- GRAINED 3D SEGMENTATION

E.1 Supplementary Material

Here we further provide the following supplementary information and results:

• Training details of our approach and baselines

• RenderPeople annotation details

• Qualitative visualization on the RenderPeople dataset

• Experiment on the Shapenet dataset

• License of the datasets

• Discussion on societal impact and use of human dataset.

E.1.1 Training details

E.1.1.0.1 Training details for PartNet dataset. For pre-training and fine-tuning stages

of our method we use the Adam optimizer with 0.001 learning rate. For pre-training we

decay the learning rate by half when validation loss saturates. During pre-training, we

use 4k matched pairs of points for a pair of views to compute our self supervision loss.

During pre-training on the PartNet dataset, we train our model with batch size of 16 for 200k

iterations. For fine-tuning, we use the batch size of 8 and exponential learning rate decay

(factor=0.99) after every 40 iterations. For k = 10, v = all setting, we train our model for

4k iterations, and for k = 10 and v = 5 setting, we train our model for 2k iterations.
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E.1.1.0.2 Training details for RenderPeople dataset. For pre-training and fine-tuning

stages of our method, we use the Adam optimizer with 0.001 learning rate. For pre-training,

we decay the learning rate by half when validation loss saturates. During pre-training, we

use 4k matched pairs of points for a pair of views to compute our self supervision loss.

During pre-training for the RenderPeople dataset, we train our model with batch size of 16

for 100k iterations. For fine-tuning, we use the batch size of 8 and exponential learning

rate decay (factor=0.99) after every 40 iterations. For the RenderPeople dataset for k = 5,

v = all setting we train our model for 2K iterations, and for k = 5 and v = 3 setting, we

train our model for 400 iterations.

E.1.1.0.3 DeepLabv3+. We use the DeepLabV3+ as our 2D CNN backbone for learning

pixel level features. We modify the last layer of DeepLabV3+. In the original version, the

(64× 64) feature map is directly 4× upsampled to a (256× 256) feature map using bilinear

interpolation, since the input image has a size of (256 × 256 × 3). We instead gradually

upsample the (64 × 64) feature map to (256 × 256) resolution in two upsampling stages

to preserve fine-grained details in the following way: Up(2) → BN(256) → Relu →

Conv2D(256, 128, 3) → Up(2) → BN(256) → Relu → Conv2D(128, 64, 3). We also

use bilinear up-sampling. Conv2D(i, o, k) is a 2D convolution layer with i input channels,

o output channels and k kernel size, Relu is rectified linear unit, Up(x) is bilinear up-

sampling by a factor of x and BN is a batch normalization layer.

E.1.1.0.4 DenseCL. We keep all the hyper parameters same as proposed in the original

work. When depth map and normal maps are also input to the network, the spatial augmen-

tations applied to the RGB image are also applied to the normal and depth maps. We do not

augment normal and depth maps in any other way. The models are trained until convergence.

Once the DenseCL baseline is pre-trained using their proposed approach on our dataset, we

use the backbone ResNet weights to initialize our DeepLabv3+ architecture as described

above and add a 2D convolution layer as a segmentation head.
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E.1.1.0.5 PointContrast. To implement our 3D baseline, we use a 3D ResNet with U-Net

based architecture with 42 layers as proposed in the original paper [189]. We use a voxel

size of 0.01. We use a batch size of 16 and 10k pairs of matched points to compute their

self supervision loss. The implementation of the loss is done using the source code provided

by the authors. We use the SGD optimizer with learning rate 0.1 with 0.9 momentum and

0.0001 weight decay. We train this model for 100k iterations. The validation loss saturates

after 100k iterations.

E.1.2 RenderPeople dataset

We label Renderpeople shapes using the labeling tool from [230]. We start by rendering

multiple RGB images of the textured mesh such that maximum surface area can be covered.

Then we label each rendered image and back-project the pixel labels to the surface. We

label 13 different parts as shown in Figure E.1.

In Figure E.2, we provide additional qualitative results on the RenderPeople dataset.

E.1.3 Experiment on Shapenet dataset

The main focus of our work is fine-grained semantic segmentation. We also experiment

with the Shapenet Semantic Segmentation dataset [28] for the task of few-shot semantic

segmentation, which consists of 16, 881 labeled point clouds across 16 shape categories,

with a total of 50 part categories. We transfer the point labels to triangles of a mesh using

nearest neighbor queries to train our models. The evaluation is done by transferring the

predicted triangle labels back to original point cloud. We use the same architecture and

training strategy for this dataset as used for other datasets. We report our results in Table E.1.

Note that instance mIOU is highly influenced by the shape categories with large number of

testing shapes e.g. Chair, Table. Class mIOU, on the other hand gives equal importance to all

categories, hence it is a more robust evaluation metric. We evaluate the performance of work

by Wang et al. [232] all all shape categories from this dataset and average the performance

over 5 random runs.
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Figure E.1: Semantic labels of a shape from the RenderPeople dataset.
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Input GTScratch 2D Imagenet DenseCL Scratch 3D PointContrast Ours

Figure E.2: Visualization of predicted semantic labels on Renderpeople dataset in the
few-shot setting when k = 5 fully labeled shapes are used for fine-tuning. We visualize
the predictions of all baselines. To visualize the details of predicted segmentations in the
facial region, we provide an inset figure.
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Methods instance avg. mIOU class avg. mIOU
SO-Net [136] 64.0 -
PointCapsNet [265] 67.0 -
MortonNet [222] - -
JointSSL [11] 71.9 -
Multi-task [87] 68.2 -
Deformation [232] 68.9 66.2
PointContrast [189] 74.0 -
ACD [64] 75.7 74.1
2D Scratch 72.7 74.7
(2D+3D) Ours 74.3 75.8

Table E.1: Comparison with state-of-the-art few-shot part segmentation methods on
ShapeNet. Performance is evaluated using instance-averaged and class-averaged mIOU while
using 1% of the training data.

E.1.4 Dataset licenses

The PartNet dataset [159] is a collection of labeled shapes from ShapeNet [28]. The

license can be found on the website of ShapeNet. We obtained the license for using the

Renderpeople dataset [5] through an agreement with Renderpeople. We carefully inspected

the datasets we use and did not find identifiable information or offensive content.

To run the comparison with baseline methods, we use the source code provided by the

authors of DenseCL [1], PointContrast [3].

E.1.5 Ethics discussions

E.1.5.1 Potential negative societal impacts

We present a method for labeling detailed parts of 3D models given a provided training

set of shapes. Like many other learning-based methods, our results can be biased by training

datasets. For purpose of deploying the method for human shapes, one would need to

carefully inspect and de-bias the dataset to depict the target distribution of a wide range of

possible body shapes, clothing, skin tones, or at the intersection of race and gender.
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E.1.5.2 Personal data and human subjects

Our paper uses human 3D models from Renderpeople for training and evaluation. The

data collection and ethics approvals were taken care of by the dataset provider. We carefully

inspected the dataset and did not find identifiable information or offensive content. More

information about the dataset can be found on the websites of data provider.
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