15 research outputs found

    Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging

    Get PDF
    Novel methods for quantitative, transient-state multiparametric imaging are increasingly being demonstrated for assessment of disease and treatment efficacy. Here, we build on these by assessing the most common Non-Cartesian readout trajectories (2D/3D radials and spirals), demonstrating efficient anti-aliasing with a k-space view-sharing technique, and proposing novel methods for parameter inference with neural networks that incorporate the estimation of proton density. Our results show good agreement with gold standard and phantom references for all readout trajectories at 1.5T and 3T. Parameters inferred with the neural network were within 6.58% difference from the parameters inferred with a high-resolution dictionary. Concordance correlation coefficients were above 0.92 and the normalized root mean squared error ranged between 4.2% - 12.7% with respect to gold-standard phantom references for T1 and T2. In vivo acquisitions demonstrate sub-millimetric isotropic resolution in under five minutes with reconstruction and inference times < 7 minutes. Our 3D quantitative transient-state imaging approach could enable high-resolution multiparametric tissue quantification within clinically acceptable acquisition and reconstruction times.Comment: 43 pages, 12 Figures, 5 Table

    Time-efficient, High Resolution 3T Whole Brain Quantitative Relaxometry using 3D-QALAS with Wave-CAIPI Readouts

    Full text link
    Purpose: Volumetric, high resolution, quantitative mapping of brain tissues relaxation properties is hindered by long acquisition times and SNR challenges. This study, for the first time, combines the time efficient wave-CAIPI readouts into the 3D-QALAS acquisition scheme, enabling full brain quantitative T1, T2 and PD maps at 1.15 isotropic voxels in only 3 minutes. Methods: Wave-CAIPI readouts were embedded in the standard 3d-QALAS encoding scheme, enabling full brain quantitative parameter maps (T1, T2 and PD) at acceleration factors of R=3x2 with minimum SNR loss due to g-factor penalties. The quantitative maps using the accelerated protocol were quantitatively compared against those obtained from conventional 3D-QALAS sequence using GRAPPA acceleration of R=2 in the ISMRM NIST phantom, and ten healthy volunteers. To show the feasibility of the proposed methods in clinical settings, the accelerated wave-CAIPI 3D-QALAS sequence was also employed in pediatric patients undergoing clinical MRI examinations. Results: When tested in both the ISMRM/NIST phantom and 7 healthy volunteers, the quantitative maps using the accelerated protocol showed excellent agreement against those obtained from conventional 3D-QALAS at R=2. Conclusion: 3D-QALAS enhanced with wave-CAIPI readouts enables time-efficient, full brain quantitative T1, T2 and PD mapping at 1.15 in 3 minutes at R=3x2 acceleration. When tested on the NIST phantom and 7 healthy volunteers, the quantitative maps obtained from the accelerated wave-CAIPI 3D-QALAS protocol showed very similar values to those obtained from the standard 3D-QALAS (R=2) protocol, alluding to the robustness and reliability of the proposed methods. This study also shows that the accelerated protocol can be effectively employed in pediatric patient populations, making high-quality high-resolution full brain quantitative imaging feasible in clinical settings

    Highly efficient MRI through multi-shot echo planar imaging

    Full text link
    Multi-shot echo planar imaging (msEPI) is a promising approach to achieve high in-plane resolution with high sampling efficiency and low T2* blurring. However, due to the geometric distortion, shot-to-shot phase variations and potential subject motion, msEPI continues to be a challenge in MRI. In this work, we introduce acquisition and reconstruction strategies for robust, high-quality msEPI without phase navigators. We propose Blip Up-Down Acquisition (BUDA) using interleaved blip-up and -down phase encoding, and incorporate B0 forward-modeling into Hankel structured low-rank model to enable distortion- and navigator-free msEPI. We improve the acquisition efficiency and reconstruction quality by incorporating simultaneous multi-slice acquisition and virtual-coil reconstruction into the BUDA technique. We further combine BUDA with the novel RF-encoded gSlider acquisition, dubbed BUDA-gSlider, to achieve rapid high isotropic-resolution MRI. Deploying BUDA-gSlider with model-based reconstruction allows for distortion-free whole-brain 1mm isotropic T2 mapping in about 1 minute. It also provides whole-brain 1mm isotropic diffusion imaging with high geometric fidelity and SNR efficiency. We finally incorporate sinusoidal wave gradients during the EPI readout to better use coil sensitivity encoding with controlled aliasing.Comment: 13 pages, 10 figure

    Magnetic resonance fingerprinting review part 2: Technique and directions

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154317/1/jmri26877.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154317/2/jmri26877_am.pd

    HYDRA: Hybrid Deep Magnetic Resonance Fingerprinting

    Get PDF
    Purpose: Magnetic resonance fingerprinting (MRF) methods typically rely on dictio-nary matching to map the temporal MRF signals to quantitative tissue parameters. Such approaches suffer from inherent discretization errors, as well as high computational complexity as the dictionary size grows. To alleviate these issues, we propose a HYbrid Deep magnetic ResonAnce fingerprinting approach, referred to as HYDRA. Methods: HYDRA involves two stages: a model-based signature restoration phase and a learning-based parameter restoration phase. Signal restoration is implemented using low-rank based de-aliasing techniques while parameter restoration is performed using a deep nonlocal residual convolutional neural network. The designed network is trained on synthesized MRF data simulated with the Bloch equations and fast imaging with steady state precession (FISP) sequences. In test mode, it takes a temporal MRF signal as input and produces the corresponding tissue parameters. Results: We validated our approach on both synthetic data and anatomical data generated from a healthy subject. The results demonstrate that, in contrast to conventional dictionary-matching based MRF techniques, our approach significantly improves inference speed by eliminating the time-consuming dictionary matching operation, and alleviates discretization errors by outputting continuous-valued parameters. We further avoid the need to store a large dictionary, thus reducing memory requirements. Conclusions: Our approach demonstrates advantages in terms of inference speed, accuracy and storage requirements over competing MRF method

    Accuracy, repeatability, and reproducibility of T1 and T2 relaxation times measurement by 3D magnetic resonance fingerprinting with different dictionary resolutions

    Get PDF
    [Objectives] To assess the accuracy, repeatability, and reproducibility of T₁ and T₂ relaxation time measurements by three-dimensional magnetic resonance fingerprinting (3D MRF) using various dictionary resolutions. [Methods] The ISMRM/NIST phantom was scanned daily for 10 days in two 3 T MR scanners using a 3D MRF sequence reconstructed using four dictionaries with varying step sizes and one dictionary with wider ranges. Thirty-nine healthy volunteers were enrolled: 20 subjects underwent whole-brain MRF scans in both scanners and the rest in one scanner. ROI/VOI analyses were performed on phantom and brain MRF maps. Accuracy, repeatability, and reproducibility metrics were calculated. [Results] In the phantom study, all dictionaries showed high T₁ linearity to the reference values (R² > 0.99), repeatability (CV 0.98), repeatability (CV < 6%), and reproducibility (CV ≤ 4%) for T₂ measurement. The volunteer study demonstrated high T1 reproducibility of within-subject CV (wCV) < 4% by all dictionaries with the same ranges, both in the brain parenchyma and CSF. Yet, reproducibility was moderate for T₂ measurement (wCV < 8%). In CSF measurement, dictionaries with a smaller range showed a seemingly better reproducibility (T₁, wCV 3%; T₂, wCV 8%) than the much wider range dictionary (T₁, wCV 5%; T₂, wCV 13%). Truncated CSF relaxometry values were evident in smaller range dictionaries. [Conclusions] The accuracy, repeatability, and reproducibility of 3D MRF across various dictionary resolutions were high for T₁ and moderate for T₂ measurements. A lower-resolution dictionary with a well-defined range may be adequate, thus significantly reducing the computational load. [Key Points] • A lower-resolution dictionary with a well-defined range may be sufficient for 3D MRF reconstruction. • CSF relaxation times might be underestimated due to truncation by the upper dictionary range. • Dictionary with a higher upper range might be advisable, especially for CSF evaluation and elderly subjects whose perivascular spaces are more prominent

    Current Applications and Future Development of Magnetic Resonance Fingerprinting in Diagnosis, Characterization, and Response Monitoring in Cancer

    Get PDF
    Magnetic resonance imaging (MRI) has enabled non-invasive cancer diagnosis, monitoring, and management in common clinical settings. However, inadequate quantitative analyses in MRI continue to limit its full potential and these often have an impact on clinicians' judgments. Magnetic resonance fingerprinting (MRF) has recently been introduced to acquire multiple quantitative parameters simultaneously in a reasonable timeframe. Initial retrospective studies have demonstrated the feasibility of using MRF for various cancer characterizations. Further trials with larger cohorts are still needed to explore the repeatability and reproducibility of the data acquired by MRF. At the moment, technical difficulties such as undesirable processing time or lack of motion robustness are limiting further implementations of MRF in clinical oncology. This review summarises the latest findings and technology developments for the use of MRF in cancer management and suggests possible future implications of MRF in characterizing tumour heterogeneity and response assessment
    corecore