2,716 research outputs found

    Sparse Coding on Symmetric Positive Definite Manifolds using Bregman Divergences

    Full text link
    This paper introduces sparse coding and dictionary learning for Symmetric Positive Definite (SPD) matrices, which are often used in machine learning, computer vision and related areas. Unlike traditional sparse coding schemes that work in vector spaces, in this paper we discuss how SPD matrices can be described by sparse combination of dictionary atoms, where the atoms are also SPD matrices. We propose to seek sparse coding by embedding the space of SPD matrices into Hilbert spaces through two types of Bregman matrix divergences. This not only leads to an efficient way of performing sparse coding, but also an online and iterative scheme for dictionary learning. We apply the proposed methods to several computer vision tasks where images are represented by region covariance matrices. Our proposed algorithms outperform state-of-the-art methods on a wide range of classification tasks, including face recognition, action recognition, material classification and texture categorization

    Comparing Storm Resolving Models and Climates via Unsupervised Machine Learning

    Full text link
    Storm-resolving models (SRMs) have gained widespread interest because of the unprecedented detail with which they resolve the global climate. However, it remains difficult to quantify objective differences in how SRMs resolve complex atmospheric formations. This lack of appropriate tools for comparing model similarities is a problem in many disparate fields that involve simulation tools for complex data. To address this challenge we develop methods to estimate distributional distances based on both nonlinear dimensionality reduction and vector quantization. Our approach automatically learns appropriate notions of similarity from low-dimensional latent data representations that the different models produce. This enables an intercomparison of nine SRMs based on their high-dimensional simulation data and reveals that only six are similar in their representation of atmospheric dynamics. Furthermore, we uncover signatures of the convective response to global warming in a fully unsupervised way. Our study provides a path toward evaluating future high-resolution simulation data more objectively.Comment: 22 pages, 19 figures. Submitted to journal for consideratio

    Poisson noise reduction with non-local PCA

    Full text link
    Photon-limited imaging arises when the number of photons collected by a sensor array is small relative to the number of detector elements. Photon limitations are an important concern for many applications such as spectral imaging, night vision, nuclear medicine, and astronomy. Typically a Poisson distribution is used to model these observations, and the inherent heteroscedasticity of the data combined with standard noise removal methods yields significant artifacts. This paper introduces a novel denoising algorithm for photon-limited images which combines elements of dictionary learning and sparse patch-based representations of images. The method employs both an adaptation of Principal Component Analysis (PCA) for Poisson noise and recently developed sparsity-regularized convex optimization algorithms for photon-limited images. A comprehensive empirical evaluation of the proposed method helps characterize the performance of this approach relative to other state-of-the-art denoising methods. The results reveal that, despite its conceptual simplicity, Poisson PCA-based denoising appears to be highly competitive in very low light regimes.Comment: erratum: Image man is wrongly name pepper in the journal versio

    Insights into cosmological structure formation with machine learning

    Get PDF
    Our modern understanding of cosmological structure formation posits that small matter density fluctuations present in the early Universe, as traced by the cosmic microwave background, grow via gravitational instability to form extended haloes of dark matter. A theoretical understanding of the structure, evolution and formation of dark matter haloes is an essential step towards unravelling the intricate connection between halo and galaxy formation, needed to test our cosmological model against data from upcoming galaxy surveys. Physical understanding of the process of dark matter halo formation is made difficult by the highly non-linear nature of the haloes' evolution. I describe a new approach to gain physical insight into cosmological structure formation based on machine learning. This approach combines the ability of machine learning algorithms to learn non-linear relationships, with techniques that enable us to physically interpret the learnt mapping. I describe applications of the method, with the aim of investigating which aspects of the early universe density field impact the later formation of dark matter haloes. First I present a case where the process of halo formation is turned into a binary classification problem; the algorithm predicts whether or not dark matter `particles' in the initial conditions of a simulation will collapse into haloes of a given mass range. Second, I present its generalization to regression, where the algorithm infers the final mass of the halo to which each particle will later belong. I show that the initial tidal shear does not play a significant role compared to the initial density field in establishing final halo masses. Finally, I demonstrate that extending the framework to deep learning algorithms such as convolutional neural networks allows us to explore connections between the early universe and late time haloes beyond those studied by existing analytic approximations of halo collapse
    • …
    corecore