3 research outputs found

    3D Hair sketching for real-time dynamic & key frame animations

    Get PDF
    Physically based simulation of human hair is a well studied and well known problem. But the "pure" physically based representation of hair (and other animation elements) is not the only concern of the animators, who want to "control" the creation and animation phases of the content. This paper describes a sketch-based tool, with which a user can both create hair models with different styling parameters and produce animations of these created hair models using physically and key frame-based techniques. The model creation and animation production tasks are all performed with direct manipulation techniques in real-time. © 2008 Springer-Verlag

    HairBrush for Immersive Data-Driven Hair Modeling

    Get PDF
    International audienceWhile hair is an essential component of virtual humans, it is also one of the most challenging digital assets to create. Existing automatic techniques lack the generality and flexibility to create rich hair variations, while manual authoring interfaces often require considerable artistic skills and efforts, especially for intricate 3D hair structures that can be difficult to navigate. We propose an interactive hair modeling system that can help create complex hairstyles in minutes or hours that would otherwise take much longer with existing tools. Modelers, including novice users, can focus on the overall hairstyles and local hair deformations, as our system intelligently suggests the desired hair parts. Our method combines the flexibility of manual authoring and the convenience of data-driven automation. Since hair contains intricate 3D structures such as buns, knots, and strands, they are inherently challenging to create using traditional 2D interfaces. Our system provides a new 3D hair author-ing interface for immersive interaction in virtual reality (VR). Users can draw high-level guide strips, from which our system predicts the most plausible hairstyles via a deep neural network trained from a professionally curated dataset. Each hairstyle in our dataset is composed of multiple variations, serving as blend-shapes to fit the user drawings via global blending and local deformation. The fitted hair models are visualized as interactive suggestions that the user can select, modify, or ignore. We conducted a user study to confirm that our system can significantly reduce manual labor while improve the output quality for modeling a variety of head and facial hairstyles that are challenging to create via existing techniques
    corecore