4,422 research outputs found

    SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences

    Full text link
    While most scene flow methods use either variational optimization or a strong rigid motion assumption, we show for the first time that scene flow can also be estimated by dense interpolation of sparse matches. To this end, we find sparse matches across two stereo image pairs that are detected without any prior regularization and perform dense interpolation preserving geometric and motion boundaries by using edge information. A few iterations of variational energy minimization are performed to refine our results, which are thoroughly evaluated on the KITTI benchmark and additionally compared to state-of-the-art on MPI Sintel. For application in an automotive context, we further show that an optional ego-motion model helps to boost performance and blends smoothly into our approach to produce a segmentation of the scene into static and dynamic parts.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Combining Stereo Disparity and Optical Flow for Basic Scene Flow

    Full text link
    Scene flow is a description of real world motion in 3D that contains more information than optical flow. Because of its complexity there exists no applicable variant for real-time scene flow estimation in an automotive or commercial vehicle context that is sufficiently robust and accurate. Therefore, many applications estimate the 2D optical flow instead. In this paper, we examine the combination of top-performing state-of-the-art optical flow and stereo disparity algorithms in order to achieve a basic scene flow. On the public KITTI Scene Flow Benchmark we demonstrate the reasonable accuracy of the combination approach and show its speed in computation.Comment: Commercial Vehicle Technology Symposium (CVTS), 201

    Multi-frame scene-flow estimation using a patch model and smooth motion prior

    Get PDF
    This paper addresses the problem of estimating the dense 3D motion of a scene over several frames using a set of calibrated cameras. Most current 3D motion estimation techniques are limited to estimating the motion over a single frame, unless a strong prior model of the scene (such as a skeleton) is introduced. Estimating the 3D motion of a general scene is difficult due to untextured surfaces, complex movements and occlusions. In this paper, we show that it is possible to track the surfaces of a scene over several frames, by introducing an effective prior on the scene motion. Experimental results show that the proposed method estimates the dense scene-flow over multiple frames, without the need for multiple-view reconstructions at every frame. Furthermore, the accuracy of the proposed method is demonstrated by comparing the estimated motion against a ground truth
    corecore