149,635 research outputs found
Reconstructing 3D x-ray CT images of polymer gel dosimeters using the zero-scan method
In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the ‘zero-scan’ method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner’s x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels
Comparing Image Quality in Phase Contrast sub X-Ray Tomography -- A Round-Robin Study
How to evaluate and compare image quality from different sub-micrometer
(sub) CT scans? A simple test phantom made of polymer microbeads is used
for recording projection images as well as 13 CT scans in a number of
commercial and non-commercial scanners. From the resulting CT images, signal
and noise power spectra are modeled for estimating volume signal-to-noise
ratios (3D SNR spectra). Using the same CT images, a time- and
shape-independent transfer function (MTF) is computed for each scan, including
phase contrast effects and image blur (). The SNR spectra
and MTF of the CT scans are compared to 2D SNR spectra of the projection
images. In contrary to 2D SNR, volume SNR can be normalized with respect to the
object's power spectrum, yielding detection effectiveness (DE) a new measure
which reveals how technical differences as well as operator-choices strongly
influence scan quality for a given measurement time. Using DE, both
source-based and detector-based sub CT scanners can be studied and their
scan quality can be compared. Future application of this work requires a
particular scan acquisition scheme which will allow for measuring 3D
signal-to-noise ratios, making the model fit for 3D noise power spectra
obsolete
Semi-automated stereoradiographic upper limb 3D reconstructions using a combined parametric and statistical model: a preliminary study
PURPOSE: Quantitative assessment of 3D clinical indices may be crucial for elbow surgery planning. 3D parametric modeling from bi-planar radiographs was successfully proposed for spine and lower limb clinical investigation as an alternative for CT-scan. The aim of this study was to adapt this method to the upper limb with a preliminary validation. METHODS: CT-scan 3D models of humerus, radius and ulna were obtained from 20 cadaveric upper limbs and yielded parametric models made of geometric primitives. Primitives were defined by descriptor parameters (diameters, angles...) and correlations between these descriptors were found. Using these correlations, a semi-automated reconstruction method of humerus using bi-planar radiographs was achieved: a 3D personalized parametric model was built, from which clinical parameters were computed [orientation and projections on bone surface of trochlea sulcus to capitulum (CTS) axis, trochlea sulcus anterior offset and width of distal humeral epiphysis]. This method was evaluated by accuracy compared to CT-scan and reproducibility. RESULTS: Points-to-surface mean distance was 0.9 mm (2 RMS = 2.5 mm). For clinical parameters, mean differences were 0.4-1.9 mm and from 1.7° to 2.3°. All parameters except from angle formed by CTS axis and bi-epicondylar axis in transverse plane were reproducible. Reconstruction time was about 5 min. CONCLUSIONS: The presented method provides access to morphological upper limb parameters with very low level of radiation. Preliminary in vitro validation for humerus showed that it is fast and accurate enough to be used in clinical daily practice as an alternative to CT-scan for total elbow arthroplasty pre operative evaluation
Internal 3D Printing of Intricate Structures
International audienceAdditive technologies are increasingly used in Cultural Heritage process , for example in order to reproduce, complete, study or exhibit artefacts. 3D copies are based on digitization techniques such as laser scan or photogramme-try. In this case, the 3d copy remains limited to the external surface of objects. Medical images based digitization such as MRI or CT scan are also increasingly used in CH as they provide information on the internal structure of archaeological material. Different previous works illustrated the interest of combining 3D printing and CT scan in order to extract concealed artefacts from larger archaeological material. The method was based on 3D segmentation techniques within volume data obtained by CT scan to isolate nested objects. This approach was useful to perform a digital extraction, but in some case it is also interesting to observe the internal spatial organization of an intricate object in order to understand its production process. We propose a method for the representation of a complex internal structure based on a combination of CT scan and emerging 3D printing techniques mixing colored and transparent parts. This method was successfully applied to visualize the interior of a funeral urn and is currently applied on a set of tools agglomerated in a gangue of corrosion
RADNET: Radiologist Level Accuracy using Deep Learning for HEMORRHAGE detection in CT Scans
We describe a deep learning approach for automated brain hemorrhage detection
from computed tomography (CT) scans. Our model emulates the procedure followed
by radiologists to analyse a 3D CT scan in real-world. Similar to radiologists,
the model sifts through 2D cross-sectional slices while paying close attention
to potential hemorrhagic regions. Further, the model utilizes 3D context from
neighboring slices to improve predictions at each slice and subsequently,
aggregates the slice-level predictions to provide diagnosis at CT level. We
refer to our proposed approach as Recurrent Attention DenseNet (RADnet) as it
employs original DenseNet architecture along with adding the components of
attention for slice level predictions and recurrent neural network layer for
incorporating 3D context. The real-world performance of RADnet has been
benchmarked against independent analysis performed by three senior radiologists
for 77 brain CTs. RADnet demonstrates 81.82% hemorrhage prediction accuracy at
CT level that is comparable to radiologists. Further, RADnet achieves higher
recall than two of the three radiologists, which is remarkable.Comment: Accepted at IEEE Symposium on Biomedical Imaging (ISBI) 2018 as
conference pape
Ultra-short echo time cardiovascular magnetic resonance of atherosclerotic carotid plaque.
BACKGROUND: Multi-contrast weighted cardiovascular magnetic resonance (CMR) allows detailed plaque characterisation and assessment of plaque vulnerability. The aim of this preliminary study was to show the potential of Ultra-short Echo Time (UTE) subtraction MR in detecting calcification. METHODS: 14 ex-vivo human carotid arteries were scanned using CMR and CT, prior to histological slide preparation. Two images were acquired using a double-echo 3D UTE pulse, one with a long TE and the second with an ultra-short TE, with the same TR. An UTE subtraction (DeltaUTE) image containing only ultra-short T2 (and T2*) signals was obtained by post-processing subtraction of the 2 UTE images. The DeltaUTE image was compared to the conventional 3D T1-weighted sequence and CT scan of the carotid arteries.
RESULTS: In atheromatous carotid arteries, there was a 71% agreement between the high signal intensity areas on DeltaUTE images and CT scan. The same areas were represented as low signal intensity on T1W and areas of void on histology, indicating focal calcification. However, in 15% of all the scans there were some incongruent regions of high intensity on DeltaUTE that did not correspond with a high intensity signal on CT, and histology confirmed the absence of calcification.
CONCLUSIONS: We have demonstrated that the UTE sequence has potential to identify calcified plaque. Further work is needed to fully understand the UTE findings
Effect of an initial solution in iterative reconstruction of dynamically changing objects
Visualizing and analyzing dynamic processes in 3D is an emerging topic, e.g. in geosciences (Berg et al., 2009; Cnudde and Boone, 2013; Bultreys et al., accepted), which has only recently become possible due to fast, high-resolution CT scanning. However; dynamically changing objects pose a challenge in CT-imaging because the existing reconstruction algorithms, which reconstruct the sample volume from a number of scan images, presume an unchanging sample during the acquisition of the projection images. Movements or changes during the scan cause artefacts in the resulting volume. Furthermore, when fast processes are visualized, the acquisition time needs to be reduced, thus drastically decreasing the signal-to-noise ratio (SNR).
To address these issues, an iterative reconstruction technique is applied, where an initial solution is provided to the algorithm. In this work, we present an evaluation of this method based on both simulations and real experimental data
Renal Tumor Cryoablation Planning. The Efficiency of Simulation on Reconstructed 3D CT Scan
Introduction & Objective: Nephron-sparing surgical techniques risks are related to tumor relationships with adjacent anatomic structures. Complexity of the renal anatomy drives the interest to develop tools for 3D reconstruction and surgery simulation. The aim of the article was to assess the simulation on reconstructed 3D CT scan used for planning the cryoablation. Material & Method: A prospective randomized study was performed between Jan. 2007 and July 2009 on 27 patients who underwent retroperitoneoscopic T1a renal tumors cryoablation (RC). All patients were assessed preoperatively by CT scan, also used for 3D volume rendering. In the Gr.A, the patients underwent surgery planning by simulation on 3D CT scan. In the Gr.B., patients underwent standard RC. The two groups were compared in terms of surgical time, bleeding, postoperative drainage, analgesics requirement, hospital stay, time to socio-professional reintegration. Results: Fourteen patients underwent preoperative cryoablation planning (Gr.A) and 13 patients underwent standard CR (Gr.B). All parameters analyzed were shorter in the Gr.A. On multivariate logistic regression, only shortens of the surgical time (138.79±5.51 min. in Gr.A. vs. 140.92±5.54 min in Gr.B.) and bleeding (164.29±60.22 mL in Gr.A. vs. 215.38±100.80 mL in Gr.B.) achieved statistical significance (p<0.05). The number of cryoneedles assessed by simulation had a 92.52% accuracy when compared with those effectively used. Conclusions: Simulation of the cryoablation using reconstructed 3D CT scan improves the surgical results. The application used for simulation was able to accurately assess the number of cryoneedles required for tumor ablation, their direction and approach
- …
