14,432 research outputs found

    Learning with Limited Annotations: A Survey on Deep Semi-Supervised Learning for Medical Image Segmentation

    Full text link
    Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarized both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review could inspire the research community to explore solutions for this challenge and further promote the developments in medical image segmentation field

    Geometry meets semantics for semi-supervised monocular depth estimation

    Full text link
    Depth estimation from a single image represents a very exciting challenge in computer vision. While other image-based depth sensing techniques leverage on the geometry between different viewpoints (e.g., stereo or structure from motion), the lack of these cues within a single image renders ill-posed the monocular depth estimation task. For inference, state-of-the-art encoder-decoder architectures for monocular depth estimation rely on effective feature representations learned at training time. For unsupervised training of these models, geometry has been effectively exploited by suitable images warping losses computed from views acquired by a stereo rig or a moving camera. In this paper, we make a further step forward showing that learning semantic information from images enables to improve effectively monocular depth estimation as well. In particular, by leveraging on semantically labeled images together with unsupervised signals gained by geometry through an image warping loss, we propose a deep learning approach aimed at joint semantic segmentation and depth estimation. Our overall learning framework is semi-supervised, as we deploy groundtruth data only in the semantic domain. At training time, our network learns a common feature representation for both tasks and a novel cross-task loss function is proposed. The experimental findings show how, jointly tackling depth prediction and semantic segmentation, allows to improve depth estimation accuracy. In particular, on the KITTI dataset our network outperforms state-of-the-art methods for monocular depth estimation.Comment: 16 pages, Accepted to ACCV 201

    Anatomically-aware Uncertainty for Semi-supervised Image Segmentation

    Full text link
    Semi-supervised learning relaxes the need of large pixel-wise labeled datasets for image segmentation by leveraging unlabeled data. A prominent way to exploit unlabeled data is to regularize model predictions. Since the predictions of unlabeled data can be unreliable, uncertainty-aware schemes are typically employed to gradually learn from meaningful and reliable predictions. Uncertainty estimation methods, however, rely on multiple inferences from the model predictions that must be computed for each training step, which is computationally expensive. Moreover, these uncertainty maps capture pixel-wise disparities and do not consider global information. This work proposes a novel method to estimate segmentation uncertainty by leveraging global information from the segmentation masks. More precisely, an anatomically-aware representation is first learnt to model the available segmentation masks. The learnt representation thereupon maps the prediction of a new segmentation into an anatomically-plausible segmentation. The deviation from the plausible segmentation aids in estimating the underlying pixel-level uncertainty in order to further guide the segmentation network. The proposed method consequently estimates the uncertainty using a single inference from our representation, thereby reducing the total computation. We evaluate our method on two publicly available segmentation datasets of left atria in cardiac MRIs and of multiple organs in abdominal CTs. Our anatomically-aware method improves the segmentation accuracy over the state-of-the-art semi-supervised methods in terms of two commonly used evaluation metrics.Comment: Accepted at Medical Image Analysis. Code is available at: $\href{https://github.com/adigasu/Anatomically-aware_Uncertainty_for_Semi-supervised_Segmentation}{Github}
    • …
    corecore