376 research outputs found

    Predicting Session Length in Media Streaming

    Full text link
    Session length is a very important aspect in determining a user's satisfaction with a media streaming service. Being able to predict how long a session will last can be of great use for various downstream tasks, such as recommendations and ad scheduling. Most of the related literature on user interaction duration has focused on dwell time for websites, usually in the context of approximating post-click satisfaction either in search results, or display ads. In this work we present the first analysis of session length in a mobile-focused online service, using a real world data-set from a major music streaming service. We use survival analysis techniques to show that the characteristics of the length distributions can differ significantly between users, and use gradient boosted trees with appropriate objectives to predict the length of a session using only information available at its beginning. Our evaluation on real world data illustrates that our proposed technique outperforms the considered baseline.Comment: 4 pages, 3 figure

    A Meta-Evaluation of C/W/L/A Metrics: System Ranking Similarity, System Ranking Consistency and Discriminative Power

    Full text link
    Recently, Moffat et al. proposed an analytic framework, namely C/W/L/A, for offline evaluation metrics. This framework allows information retrieval (IR) researchers to design evaluation metrics through the flexible combination of user browsing models and user gain aggregations. However, the statistical stability of C/W/L/A metrics with different aggregations is not yet investigated. In this study, we investigate the statistical stability of C/W/L/A metrics from the perspective of: (1) the system ranking similarity among aggregations, (2) the system ranking consistency of aggregations and (3) the discriminative power of aggregations. More specifically, we combined various aggregation functions with the browsing model of Precision, Discounted Cumulative Gain (DCG), Rank-Biased Precision (RBP), INST, Average Precision (AP) and Expected Reciprocal Rank (ERR), examing their performances in terms of system ranking similarity, system ranking consistency and discriminative power on two offline test collections. Our experimental result suggests that, in terms of system ranking consistency and discriminative power, the aggregation function of expected rate of gain (ERG) has an outstanding performance while the aggregation function of maximum relevance usually has an insufficient performance. The result also suggests that Precision, DCG, RBP, INST and AP with their canonical aggregation all have favourable performances in system ranking consistency and discriminative power; but for ERR, replacing its canonical aggregation with ERG can further strengthen the discriminative power while obtaining a system ranking list similar to the canonical version at the same time

    Applying the KISS principle for the CLEF-IP 2010 prior art candidate patent search task

    Get PDF
    We present our experiments and results for the DCU CNGL participation in the CLEF-IP 2010 Candidate Patent Search Task. Our work applied standard information retrieval (IR) techniques to patent search. In addition, a very simple citation extraction method was applied to improve the results. This was our second consecutive participation in the CLEF-IP tasks. Our experiments in 2009 showed that many sophisticated approach to IR do not improve the retrieval effectiveness for this task. For this reason of we decided to apply only simple methods in 2010. These were demonstrated to be highly competitive with other participants. DCU submitted three runs for the Prior Art Candidate Search Task, two of these runs achieved the second and third ranks among the 25 runs submitted by nine different participants. Our best run achieved MAP of 0.203, recall of 0.618, and PRES of 0.523

    Unbiased Learning to Rank with Unbiased Propensity Estimation

    Full text link
    Learning to rank with biased click data is a well-known challenge. A variety of methods has been explored to debias click data for learning to rank such as click models, result interleaving and, more recently, the unbiased learning-to-rank framework based on inverse propensity weighting. Despite their differences, most existing studies separate the estimation of click bias (namely the \textit{propensity model}) from the learning of ranking algorithms. To estimate click propensities, they either conduct online result randomization, which can negatively affect the user experience, or offline parameter estimation, which has special requirements for click data and is optimized for objectives (e.g. click likelihood) that are not directly related to the ranking performance of the system. In this work, we address those problems by unifying the learning of propensity models and ranking models. We find that the problem of estimating a propensity model from click data is a dual problem of unbiased learning to rank. Based on this observation, we propose a Dual Learning Algorithm (DLA) that jointly learns an unbiased ranker and an \textit{unbiased propensity model}. DLA is an automatic unbiased learning-to-rank framework as it directly learns unbiased ranking models from biased click data without any preprocessing. It can adapt to the change of bias distributions and is applicable to online learning. Our empirical experiments with synthetic and real-world data show that the models trained with DLA significantly outperformed the unbiased learning-to-rank algorithms based on result randomization and the models trained with relevance signals extracted by click models

    WISER: A Semantic Approach for Expert Finding in Academia based on Entity Linking

    Full text link
    We present WISER, a new semantic search engine for expert finding in academia. Our system is unsupervised and it jointly combines classical language modeling techniques, based on text evidences, with the Wikipedia Knowledge Graph, via entity linking. WISER indexes each academic author through a novel profiling technique which models her expertise with a small, labeled and weighted graph drawn from Wikipedia. Nodes in this graph are the Wikipedia entities mentioned in the author's publications, whereas the weighted edges express the semantic relatedness among these entities computed via textual and graph-based relatedness functions. Every node is also labeled with a relevance score which models the pertinence of the corresponding entity to author's expertise, and is computed by means of a proper random-walk calculation over that graph; and with a latent vector representation which is learned via entity and other kinds of structural embeddings derived from Wikipedia. At query time, experts are retrieved by combining classic document-centric approaches, which exploit the occurrences of query terms in the author's documents, with a novel set of profile-centric scoring strategies, which compute the semantic relatedness between the author's expertise and the query topic via the above graph-based profiles. The effectiveness of our system is established over a large-scale experimental test on a standard dataset for this task. We show that WISER achieves better performance than all the other competitors, thus proving the effectiveness of modelling author's profile via our "semantic" graph of entities. Finally, we comment on the use of WISER for indexing and profiling the whole research community within the University of Pisa, and its application to technology transfer in our University
    corecore