768 research outputs found

    Application and evaluation of multi-dimensional diversity

    Get PDF
    Traditional information retrieval (IR) systems mostly focus on finding documents relevant to queries without considering other documents in the search results. This approach works quite well in general cases; however, this also means that the set of returned documents in a result list can be very similar to each other. This can be an undesired system property from a user's perspective. The creation of IR systems that support the search result diversification present many challenges, indeed current evaluation measures and methodologies are still unclear with regards to specific search domains and dimensions of diversity. In this paper, we highlight various issues in relation to image search diversification for the ImageClef 2009 collection and tasks. Furthermore, we discuss the problem of defining clusters/subtopics by mixing diversity dimensions regardless of which dimension is important in relation to information need or circumstances. We also introduce possible applications and evaluation metrics for diversity based retrieval

    Relevance Judgments between TREC and Non-TREC Assessors

    Get PDF
    This paper investigates the agreement of relevance assessments between official TREC judgments and those generated from an interactive IR experiment. Results show that 63% of documents judged relevant by our users matched official TREC judgments. Several factors contributed to differences in the agreements: the number of retrieved relevant documents; the number of relevant documents judged; system effectiveness per topic and the ranking of relevant documents

    Top-k Route Search through Submodularity Modeling of Recurrent POI Features

    Full text link
    We consider a practical top-k route search problem: given a collection of points of interest (POIs) with rated features and traveling costs between POIs, a user wants to find k routes from a source to a destination and limited in a cost budget, that maximally match her needs on feature preferences. One challenge is dealing with the personalized diversity requirement where users have various trade-off between quantity (the number of POIs with a specified feature) and variety (the coverage of specified features). Another challenge is the large scale of the POI map and the great many alternative routes to search. We model the personalized diversity requirement by the whole class of submodular functions, and present an optimal solution to the top-k route search problem through indices for retrieving relevant POIs in both feature and route spaces and various strategies for pruning the search space using user preferences and constraints. We also present promising heuristic solutions and evaluate all the solutions on real life data.Comment: 11 pages, 7 figures, 2 table

    Active Sampling for Large-scale Information Retrieval Evaluation

    Get PDF
    Evaluation is crucial in Information Retrieval. The development of models, tools and methods has significantly benefited from the availability of reusable test collections formed through a standardized and thoroughly tested methodology, known as the Cranfield paradigm. Constructing these collections requires obtaining relevance judgments for a pool of documents, retrieved by systems participating in an evaluation task; thus involves immense human labor. To alleviate this effort different methods for constructing collections have been proposed in the literature, falling under two broad categories: (a) sampling, and (b) active selection of documents. The former devises a smart sampling strategy by choosing only a subset of documents to be assessed and inferring evaluation measure on the basis of the obtained sample; the sampling distribution is being fixed at the beginning of the process. The latter recognizes that systems contributing documents to be judged vary in quality, and actively selects documents from good systems. The quality of systems is measured every time a new document is being judged. In this paper we seek to solve the problem of large-scale retrieval evaluation combining the two approaches. We devise an active sampling method that avoids the bias of the active selection methods towards good systems, and at the same time reduces the variance of the current sampling approaches by placing a distribution over systems, which varies as judgments become available. We validate the proposed method using TREC data and demonstrate the advantages of this new method compared to past approaches

    Synchronous collaborative information retrieval: techniques and evaluation

    Get PDF
    Synchronous Collaborative Information Retrieval refers to systems that support multiple users searching together at the same time in order to satisfy a shared information need. To date most SCIR systems have focussed on providing various awareness tools in order to enable collaborating users to coordinate the search task. However, requiring users to both search and coordinate the group activity may prove too demanding. On the other hand without effective coordination policies the group search may not be effective. In this paper we propose and evaluate novel system-mediated techniques for coordinating a group search. These techniques allow for an effective division of labour across the group whereby each group member can explore a subset of the search space.We also propose and evaluate techniques to support automated sharing of knowledge across searchers in SCIR, through novel collaborative and complementary relevance feedback techniques. In order to evaluate these techniques, we propose a framework for SCIR evaluation based on simulations. To populate these simulations we extract data from TREC interactive search logs. This work represent the first simulations of SCIR to date and the first such use of this TREC data

    Latent Relational Metric Learning via Memory-based Attention for Collaborative Ranking

    Full text link
    This paper proposes a new neural architecture for collaborative ranking with implicit feedback. Our model, LRML (\textit{Latent Relational Metric Learning}) is a novel metric learning approach for recommendation. More specifically, instead of simple push-pull mechanisms between user and item pairs, we propose to learn latent relations that describe each user item interaction. This helps to alleviate the potential geometric inflexibility of existing metric learing approaches. This enables not only better performance but also a greater extent of modeling capability, allowing our model to scale to a larger number of interactions. In order to do so, we employ a augmented memory module and learn to attend over these memory blocks to construct latent relations. The memory-based attention module is controlled by the user-item interaction, making the learned relation vector specific to each user-item pair. Hence, this can be interpreted as learning an exclusive and optimal relational translation for each user-item interaction. The proposed architecture demonstrates the state-of-the-art performance across multiple recommendation benchmarks. LRML outperforms other metric learning models by 6%7.5%6\%-7.5\% in terms of Hits@10 and nDCG@10 on large datasets such as Netflix and MovieLens20M. Moreover, qualitative studies also demonstrate evidence that our proposed model is able to infer and encode explicit sentiment, temporal and attribute information despite being only trained on implicit feedback. As such, this ascertains the ability of LRML to uncover hidden relational structure within implicit datasets.Comment: WWW 201
    corecore