3 research outputs found

    3-dimensional throat region segmentation from MRI data based on fourier interpolation and 3-dimensional level set methods

    Get PDF
    A new algorithm for 3D throat region segmentation from magnetic resonance imaging (MRI) is presented. The proposed algorithm initially pre-processes the MRI data to increase the contrast between the throat region and its surrounding tissues and also to reduce artifacts. Isotropic 3D volume is reconstructed using Fast Fourier Transform based interpolation. Furthermore, a cube encompassing the throat region is evolved using level set method to form a smooth 3D boundary of the throat region. The results of the proposed algorithm on real and synthetic MRI data are used to validate the robustness and accuracy of the algorithm

    Automatic 3D segmentation of MRI data for detection of head and neck cancerous lymph nodes

    Get PDF
    A novel algorithm for automatic 3D segmentation of magnetic resonance imaging (MRI) data for detection of head and neck cancerous lymph nodes (LN)) is presented in this paper. The proposed algorithm pre-processes the MRI data slices to enhance quality and reduce artefacts. A modified Fuzzy c-mean process is performed through all slices, followed by a probability map which refines the clustering results, to detect the approximate position of cancerous lymph nodes. Fourier interpolation is applied to create an isotropic 3D MRI volume. A new 3D level set method segments the tumour from the interpolated MRI volume. The proposed algorithm is tested on synthetic and real MRI data. The results show that the novel cancerous lymph nodes 3D volume extraction algorithm has over 0.9 Dice similarity score on synthetic data and 0.7 on real MRI data. The F-measure is 0.92 on synthetic data and 0.75 on real data

    Automatic 3D detection and segmentation of head and neck cancer from MRI data

    Get PDF
    A novel algorithm for automatic head and neck 3D tumour segmentation from magnetic resonance imaging (MRI) is presented. The proposed algorithm pre-processes the MRI data slices to enhance quality and reduce artefacts. An intensity standardisation process is performed between slices, followed by cancer region segmentation of central slice, to get the correct intensity range and rough location of tumour regions. Fourier interpolation is applied to create isotropic 3D MR I volume. A new location-constrained 3D level set method segments the tumour from the interpolated MRI volume. The proposed algorithm is tested on real MRI data. The results show that the novel 3D tumour volume extraction algorithm has an improved dice score and F-measure when compared to the previous 2D and 3D segmentation method
    corecore