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Abstract—A novel algorithm for automatic head and neck 3D 

tumour segmentation from magnetic resonance imaging (MRI) is 

presented. The proposed algorithm pre-processes the MRI data 

slices to enhance quality and reduce artefacts. An intensity 

standardisation process is performed between slices, followed by 

cancer region segmentation of central slice, to get the correct 

intensity range and rough location of tumour regions. Fourier 

interpolation is applied to create isotropic 3D MRI volume.  A 

new location-constrained 3D level set method segments the 

tumour from the interpolated MRI volume. The proposed 

algorithm is tested on real MRI data. The results show that the 

novel 3D tumour volume extraction algorithm has an improved 

dice score and F-measure when compared to the previous 2D and 

3D segmentation method. 
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I. INTRODUCTION  

According to the World Health Organisation [1], 
approximately 8.8 million people worldwide died from cancer 
in 2015. Radiotherapy, along with surgery, provides the main 
option for curative treatment. Radiotherapy planning is a 
complicated and lengthy process requiring detailed defining of 
complex cancer regions. This area is referred to as the Gross 
Tumour Volume (GTV). Definition of this region is 
fundamental to accurate and effective radiation treatment 
planning.  Development of automated delineation methods can 
reduce inter and intra variabilities of manual tumour 
delineation, and provide objective and reliable assistance to 
clinical oncologists to reduce work load and improve radiation 
treatment [2].  

Fig.1 (a) shows a T1 weighted gadolinium-enhanced head 
and neck MR image with tongue base tumours. It is known that 
the tumour region has fuzzy boundaries and it is not 
significantly distinct from neighbour tissues. Furthermore as 
seen in Fig.1 (b) artefacts of MRI data, such as uneven 
illumination, are obvious. All these make automatic tumour 
segmentation a very challenging task. 

A variety of algorithms have been proposed for head and 
neck cancer segmentation, such as atlas-based techniques [3], 
training-based approaches [4], and Deformable model [5, 6]. 

However, these methods cannot efficiently solve the automatic 
segmentation challenge. The work in [5] relies on manually 
initialisation, which is neither automatic nor objective while in 
[3], the atlas-based and [4] the training-based approaches relies 
on an atlas or large amount of labelled data. Also, from the 
review of deep learning research on medical image[7], 
currently no efficient deep learning approach is applied on head 
and neck cancer segmentation, this may indicate that the 
trending deep learning method can still not solve our challenge 
well. The work in  [6] applies 3D level set segmentation to 
bone segmentation from CT data which have a significant 
contrast difference. Our previous work [8] presented an 
automatic 2D tumour segmentation method, which was tested 
on real MRI slices.  In  [9], 3D throat detection was obtained as 
interpolation of segmented 2D MRI slices. The novel work 
presented in this paper addresses the automatic extraction of 3D 
tumour models (with poor contrast difference) from a series of 
MRI slices, using a new 3D level set method (LSM). 

 

(a) 

 

(b) 

Fig. 1. (a) A T1-weighted Gadolinium-enhanced head and neck MR image 
example with cancerous lymph  nodes; (b) A image serires from one MRI 
dataset 

This paper presents a new fully automatic algorithm to 
segment 3D tumour volume from T1-weighted Gadolinium-
enhanced MRI data. The challenges of this work include 
segmenting tumour regions with fuzzy boundaries, irregular 
shapes, non-uniform intensities, and avoiding adjacent 
anatomical structures. It is essential to determine the intensity 
range of the tumour area; also the size of the initialisation cube 
for 3D LSM can also impact the final result.  This algorithm is 
validated on real MRI data from the Beatson West of Scotland 
Cancer Centre, in Glasgow. 

*Research supported by Beatson Cancer Charity.  
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Fig. 2. Workflow of proposed head and neck cancer segmentation system. 

 The remainder of the paper is organised as follows.  Section 
2 describes the new automatic 3D tumour detection, 
segmentation and visualisation algorithm. Section 3 
demonstrates the experimental results on real MRI datasets. 
The last section concludes the paper. 

II. AUTOMATIC HEAD AND NECK TUMOUR 3D SEGMENTATION 

The proposed head and neck tumour segmentation process 
as shown in Fig.2 contains three parts: a) image pre-processing, 
b) tumour detection on central slice, c) tumour segmentation 
with 3D location-constrained LSM.  

A. Image pre-processing 

In this work, multiple pre-processing techniques are applied 
on MRI data for artefacts removing and image enhancing. 
Background noise is minimised using morphological opening 
and majority operation [10], which can remove small noisy 
regions while preserve edges in the image. The images  are 
enhanced by background brightness preserving contrast 
enhancement technique [11].  

There are two types of intensity variations in MRI data. The 
first type is intensity inhomogeneity (also named as Bias field) 
[12] on single slice. In this paper, inhomogeneity (Bias) is 
estimated and corrected based on techniques from [13]. The 
second type of intensity variation is between slices; it occurs 
when a certain measured intensity cannot be associated with a 
specific tissue class [12] on all slices, which is solved by 
intensity standardisation between slices in this work [10].  
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Fig. 3. Intensity standardisation example: (a) central slice used as reference, 
(b) slice A before intensity standardisation, (c) slice A after intensity 
standardisation, (d) histogram of central slice, (e) histogram of slice A before 
standardisation, (f) histogram of slice A after standardisation. 

As this work will use intensity based 3D level set method 
for tumour extraction, it is essential to take intensity 
standardisation to acquire uniform intensity range of tumour 
regions through all slices. Fig.3 demonstrates an example of 
intensity standardisation. It can be shown that after intensity 
standardisation, slice A has an intensity distribution more 
similar to the reference slice. Thus a uniform intensity range of 
tumour regions through all slices can be determined. 

The MRI data used in this work has anisotropic voxels, 
while 3D LSM only works well on isotropic voxels. Original 
voxels are converted to isotopic voxels through Fourier 
interpolation, which was introduced in [9]. The volume for 
LSM segmentation is reconstructed in 3D using both real and 
interpolated slices. 

B. 2D tumour detection on central slice 

To extract tumour from MRI data, first essential task is 
detecting rough location of tumour region. In this work, central 
slice is taken for 2D tumour detection. The detected 2D tumour 
region on central slice will be used as a guide for 3D tumour 
volume segmentation in following section. 

Steps of tumour detection on central slice are also shown in 
Fig.2. The throat is detected by two fuzzy rules [8]. Then 
modified fuzzy c-mean (MFCM) [14] utilises intensity and 
spatial information of pixels to organise them into five clusters. 
Clustering into five categories is based on the assumption that a 
pre-processed head and neck MRI slice consists of four main 
tissue types (fatty tissue, cancer tissue, normal tissue, and 
normal muscle tissues) and background. Based on prior 
biomedical knowledge from clinicians, head and neck 
cancerous regions (tumour and cancerous lymph nodes) are 
normally located around the throat region, and they usually 
have first or second brightest intensity among all tissues, 
regions of interest are taken from these clusters and further 
refined. Combined with edge information of the original image, 
large regions are separated. And regions around throat will be 
preserved. Then symmetrical regions (if there are) on two very 
side of preserved regions will be detected and removed, 
because they are very likely to be salivary glands. Then 
watershed transform [15] is applied to further separate regions, 
and then small regions are removed. Thus a rough tumour 
region is detected, and this region can be used as an initial 
contour for 2D level set method to get the accurate tumour 
region on central slice. 

In this work, localised region-based level set method [16] is 
used for 2D tumour segmentation on central slice, whose 
evolving equation is given as: 
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Fig. 4. 2D tumour detection and segmentation on central slice of an interpolated MRI dataset. (a) Central slice and detected throat region (red region). (b) 
Selected cluster which contains tumour region. (c) Regions around throat further separated by watershed transform, the biggest sky blue region is the region of 
interest, i.e. rough tumour location. (d) Initial region for level set evolution, this region is eroded ROI (largest sky blue region in (c)). (e) Tumour region segmented 
by 2D level set method.
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Where the first term on the right hand side of Eq.1 is the 
external force (i.e. image force) which drives level set evolving 
to desired boundary and second term is internal force, term 
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Where inx  is the mean and 
in

A  is the area of interior and  

outx  and 
out

A  of the exterior local region  )y,x(M  of each 

point on the evolving curve (zero level of level sets, i.e. =0). 
Based on Eq. 1 and Eq.2, level set evolution will stop when 
foreground and background have maximally separate mean 
intensities [17]. 

In Fig.4 (a)-(e), the workflow of 2D tumour region 
detection and segmentation is displayed. Finally, the 2D 
tumour region (call it Seg2D) is obtained through localised 
region-based level set method [5, 16].. 

C. 3D tumour segmentation 

Results of the level set evolution rely on the initialisation, 
which includes the position and size of initial volume. In this 
work, the position is set based on Seg2D, the proposed work 
takes central of Seg2D as horizontal position, and the vertical 
position is half of whole volume’s depth due to Seg2D is on the 
central slice. A symmetric pyramid is taken as initial volume. 
The pyramid’s max length and width are 5 percent of MRI 
volume’s axial size; and the length and width will be 1 on the 
top and bottom of MRI volume. These chosen values guarantee 
that the initial pyramid is not distant from tumour region. An 
example of initial pyramid is shown in Fig.5 (a).  

In this work, the speed function F used for 3D level set 
evolution is modified based on [6]: 

( ) ( )F I div g        (3) 

Where first term on right hand side of Eq.3 is external force 
(i.e. image force), I is image data and  is predefined lower 

bound of the gray-level of the target object, in this work lower 
bound of Seg2D is taken as  . The second term is internal 

force, and ( )div g   is curvature flow weighted by gradient 

feature map g [6]. This level set function is only sensitive to 
intensities and can produce many false positives. Thus in this 
work, the speed function is modified as following: 

( ( ) ) ( )LF I div g         (4) 

 Where ( )L I is the location constrain of image force, 

which deweights image force of regions far from throat and 
initial volume, but keep weights of Seg2D region. The 
deweighting is based on two Gaussian distribution: 
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 Eq.5 shows the deweighting rule for regions away from 
initial volume centre (i.e. centre of Seg2D). Eq.6 shows the 
deweighting rule for regions away from throat region centre. 
These two rules are same for each layer of MRI volume. 

[ , ]p px y  is the coordinate of pixel P, [ , ]s sx y  is coordinate 

of centre of Seg2D and [ , ]t tx y is coordinate of centre of throat 

region. 
s  and 

t  are automatically and adaptively set 

according to radius of Seg2D and throat region. Based on these 
two distributions, and the rule that keeping weight of Seg2D 

region, the ( )L I  is given as following: 

( ) .*max( ( .* ), 2 )L s tI I norm f f Seg D   (7) 



Where norm means normalise the product of 
sf  and 

tf , 

Seg2D is a binary map which also fits the range [0,1]. In this 
way image force of pixels away from both Seg2D and throat 
region will significantly decreased, while the weight of Seg2D 
will not be influenced. Introducing Eq.7 to Eq.4, a location-
constrained level set function is acquired. Based on the Eq.4 
and initialisation (Fig.5 (a)) of level set, the 3D tumour volume 
can be segmented as Fig.5 shown: 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Tumour segmentation using 3D level set method: (a) initial cube, 
(b)(c)(d) 3D evolving process, (d) segmented tumour. 

As demonstrated in Fig.5 (b)-(d), through level set 
evolution, the initial pyramid expanded or eroded in both 
vertical and horizontal planes, and finally converged at 
tumour’s surface. 

III. EXPERIMENTAL RESULTS 

The new algorithm was implemented in Matlab, running on 
a PC with 16G RAM, 3.2GHz Intel(R) Core(TM) i7-8700 CPU. 
Experiments were taken on real MRI datasets from Beatson 
West of Scotland Cancer Centre to test the performance of the 
new algorithm. The data contains T1-weighted Gadolinium-
enhanced MR images. This part will demonstrate some results 
of proposed algorithm on real data, and also some quantitative 

study compared with 2D plus interpolation algorithm [8], and 
other 3D algorithm [18].  

The comparison between results acquired from two 
methods (proposed and [8] ) is shown in Fig.6. Each row shows 
the results on one MRI dataset, and the left parts of each line 
((a)(g)(m)) are 3D volume from proposed algorithm, right parts 
((f)(l)(r)) are from 2D approach [8]. In the middle of each row 
are comparisons of 2D contours among proposed algorithm, 2D 
method, and gold standards. The gold standards are consensus 
tumour outlines on 2D axial slices according to clinicians from 
Beatson West of Scotland Cancer Centre. From the 2D 
contours comparison it can be seen that the proposed algorithm 
has similar segmentation compared with gold standards.  Also, 
the visualisation of 3D tumour volumes in Fig.6 (a)(g)(m) 
shows that the proposed 3D method can produce tumour 
volume with smooth surface and consistent structure. On the 
other side, the volumes extracted by 2D approach [8] have 
sharp edges (Fig.6 (f)(l)(r)), and if there is inaccuracy in 2D 
segmentation (Fig.6 (q)), the structure of 3D volume will be 
inconsistent (Fig.6 (r)). 

The quantitative measurements includes Dice Similarity 
Coefficients score (DSC), false positive (FP), false negative 
(FN), and F-measure. The measurements of proposed approach, 
2D method [8] and threshold-based 3D level set method [18] 
will be compared.  

The DSC is to measure similarity between two samples A 
and B; it can be calculated as given [19]: 
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Fig. 6. 3D tumour volume segmented from real data, each row uses the same dataset. (a)(g)(m) are volumes obtained by proposed algorithm; (f)(l)(r) are volume 
acquired by 2D method; (b)(c)(d)(e), (h)(i)(j)(k) and (n)(o)(p)(q) are 2D contours on separate axial slices. Yellow contours are from gold standards (consensus 
manual outline), red contours are from proposed algorithm, and blue contours are from 2D approach [8]. 



In Eq.8, the symbol   denotes the intersected area 
between contour A and contour B. 

The F-measure is given as: 
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Based on Eq. 8 and Eq. 9, the DSC and F-measure bar 
graphs are drawn:  

 
(a) 

 
(b) 

Fig. 7. Comparison of  DSC and F-measure between 2D approach verses 
gold standards (consensus manual outlines), and proposed 3D method verses 
gold standards. The x axis represents dataset 1 to 10. 

From Fig.7, it can be seen that in half above datasets the 
proposed method performs better. The mean DSC of 2D 
approach on all ten datasets is 0.65, and the proposed 3D 
method is 0.70. The average F-measure of 2D+I is 0.70, and 
the average F-measure of proposed 3D method is 0.74. The 
quantitative study comparisons of proposed method, 2D 
method [8], and 3DLSM [18] are summarised in following 
table: 

TABLE I.  DSCS, F-MEASURE, FALSE POSITIVE, AND FALSE NEGATIVE 

COMPARISONS. 

Methods DSCs F-measure FP FN 

Proposed 0.6983 0.7386 0.2401 0.0039 

2D+I 0.6484 0.7035 0.3187 0.0033 

3DLSM 0.6302 0.6589 0.4199 0.0020 

  

 Table.1 lists the measurements of three approaches 
according to gold standards (manual consensus outlines). The 
DSCs, F-measure, FP and FN all show that the proposed 
method has better performance. 

 Fig.8 shows  the time cost of proposed 3D approach and 2D 
approach. It can be seen that proposed approach requires less 
processing time. Furthermore, when the number of input slices 
increase, the time consumption of 2D method is increasing 
linearly, while time cost of proposed method is increasing with 
lower rate. The time consumption will be extremely vital then 
when the input data is huger. 

The drawbacks of 2D approaches is that detection and 
segmentation are taken on every slice, this is time consuming, 
and any failure of detection can deteriorate 3D reconstruction 
result. The 3D approach only take detection once on central 
slice to get roughly start point, and then use intensity as guide 
to segment 3D volume, thus ensure the consistency of extracted 
3D structure. Moreover, the location-constrained level set 
method efficiently reduced false positive rate of 3D level set 
method in head and neck tumour extraction, and thus gave 
better results. 

 

Fig. 8. Time consumption of 2D and proposed 3D method, the x axis is the 
number of input slices, the y axis is the time cost in seconds. 

IV. CONCLUSION 

There are challenges for the automatic3D segmentation of 
tumours on T1 head and neck MRI datasets. 2D segmentation 
plus reconstruction approach suffers from serious artefacts, 
high time consumption, and as a result produce unsmooth 3D 
volume. Existed 3D level set methods may fail due to the 
intensity variations between slices, and indistinct tumour 
boundaries. This paper presented a new algorithm for automatic 
3D tumours segmentation on T1 MRI datasets, which firstly 
applies intensity standardisation between slices using central 
slice as reference, then segments central slice’s cancer region, 
in this way, location and intensity range of tumour areas are 
determined; also, this work uses location-constrained level set 
method and successfully improved performance. 

The proposed method was shown to work well on real MRI 
datasets. The results show this method has lower complexity 
costs compared to the previous 2D segmentation approach. The 
results on real data show that this algorithm can have better 
segmentation results, and can produce smooth surfaces as well 
as consistent structure.  

In the future, this method will be tested on more MRI 
datasets. The modification on contrast enhancement methods 
and 3D level set function, and development of tumour start-end 
position detection are also objectives for future study. 
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