5,029 research outputs found
Photolysis of methylcobalamin. Nature of the reactive excited state
Photolysis of methylcobalamin (Co(III)corrin(CH3)L + H2O + O2 �> Co(III)(H2O)L + H2CO + OH-) shows a pronounced wave-length dependence. It is suggested that the reactive excited state is of the ligand-to-ligand charge transfer (LLCT) type and involves the promotion of an electron from the Co-C sigma-bond to a pi*(corrin) orbital. This LLCT transition mixes with the pipi*(corrin) transitions. Owing to this LLCT contribution, the pipi*-absorption bands are also photoactive but with reduced efficiency
Quantitative wave function analysis for excited states of transition metal complexes
The character of an electronically excited state is one of the most important
descriptors employed to discuss the photophysics and photochemistry of
transition metal complexes. In transition metal complexes, the interaction
between the metal and the different ligands gives rise to a rich variety of
excited states, including metal-centered, intra-ligand, metal-to-ligand charge
transfer, ligand-to-metal charge transfer, and ligand-to-ligand charge transfer
states. Most often, these excited states are identified by considering the most
important wave function excitation coefficients and inspecting visually the
involved orbitals. This procedure is tedious, subjective, and imprecise.
Instead, automatic and quantitative techniques for excited-state
characterization are desirable. In this contribution we review the concept of
charge transfer numbers---as implemented in the TheoDORE package---and show its
wide applicability to characterize the excited states of transition metal
complexes. Charge transfer numbers are a formal way to analyze an excited state
in terms of electron transitions between groups of atoms based only on the
well-defined transition density matrix. Its advantages are many: it can be
fully automatized for many excited states, is objective and reproducible, and
provides quantitative data useful for the discussion of trends or patterns. We
also introduce a formalism for spin-orbit-mixed states and a method for
statistical analysis of charge transfer numbers. The potential of this
technique is demonstrated for a number of prototypical transition metal
complexes containing Ir, Ru, and Re. Topics discussed include orbital
delocalization between metal and carbonyl ligands, nonradiative decay through
metal-centered states, effect of spin-orbit couplings on state character, and
comparison among results obtained from different electronic structure methods.Comment: 47 pages, 19 figures, including supporting information (7 pages, 1
figure
Synthesis, characterisation and photochemistry of PtIV pyridyl azido acetato complexes
PtII azido complexes [Pt(bpy)(N3)2] (1), [Pt(phen)(N3)2] (2) and trans-[Pt(N3)2(py)2] (3) incorporating the bidentate diimine ligands 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen) or the monodentate pyridine (py) respectively, have been synthesised from their chlorido precursors and characterised by X-ray crystallography; complex 3 shows significant deviation from square-planar geometry (N3–Pt–N3 angle 146.7°) as a result of steric congestion at the Pt centre. The novel PtIV complexes trans, cis-[Pt(bpy)(OAc)2(N3)2] (4), trans, cis-[Pt(phen)(OAc)2(N3)2] (5), trans, trans, trans-[Pt(OAc)2(N3)2(py)2] (6), were obtained from 1–3via oxidation with H2O2 in acetic acid followed by reaction of the intermediate with acetic anhydride. Complexes 4–6 exhibit interesting structural and photochemical properties that were studied by X-ray, NMR and UV-vis spectroscopy and TD-DFT (time-dependent density functional theory). These PtIV complexes exhibit greater absorption at longer wavelengths (ε = 9756 M−1 cm−1 at 315 nm for 4; ε = 796 M−1 cm−1 at 352 nm for 5; ε = 16900 M−1 cm−1 at 307 nm for 6, in aqueous solution) than previously reported PtIV azide complexes, due to the presence of aromatic amines, and 4–6 undergo photoactivation with both UVA (365 nm) and visible green light (514 nm). The UV-vis spectra of complexes 4–6 were calculated using TD-DFT; the nature of the transitions contributing to the UV-vis bands provide insight into the mechanism of production of the observed photoproducts. The UV-vis spectra of 1–3 were also simulated by computational methods and comparison between PtII and PtIV electronic and structural properties allowed further elucidation of the photochemistry of 4–6
Photooxidation of (2,2'-Bipyridine) (3,4-toluenedithiolato)platinum(II) following Ligand-to-Ligand Charge Transfer Excitation
Recommended from our members
Synthesis, structural characterization, and luminescence properties of mono- and di-nuclear platinum(II) complexes containing 2-(2-pyridyl)benzimidazole
Recommended from our members
A novel heteroditopic terpyridine-pincer ligand as building block for mono- and heterometallic Pd(II) and Ru(II) complexes
A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)(2)-3,5}-2,2':6',2 ''-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)(2), and [Ru(TPBr)(2)](PF6)(2), synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)(2) (7) and [Ru(TPPdCl)(2)]-(PF6)(2) (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)(2)](PF6)(2) (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono-and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (MLCT)-M-1 (Ru -> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)(2)](2+) indicates stabilization of the luminescent (MLCT)-M-3 state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)(2), are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)(2)} chromophoric unit and the (non)metalated NCN-pincer moiety
Exploring excited states of Pt(ii) diimine catecholates for photoinduced charge separation
The intense absorption in the red part of the visible range, and the presence of a lowest charge-transfer excited state, render Platinum(II) diimine catecholates potentially promising candidates for light-driven applications. Here, we test their potential as sensitisers in dye-sensitised solar cells and apply, for the first time, the sensitive method of photoacoustic calorimetry (PAC) to determine the efficiency of electron injection in the semiconductor from a photoexcited Pt(II) complex. Pt(II) catecholates containing 2,2′-bipyridine-4,4′-di-carboxylic acid (dcbpy) have been prepared from their parent iso-propyl ester derivatives, complexes of 2,2′-bipyridine-4,4′-di-C(O)OiPr, (COOiPr)2bpy, and their photophysical and electrochemical properties studied. Modifying diimine Pt(II) catecholates with carboxylic acid functionality has allowed for the anchoring of these complexes to thin film TiO2, where steric bulk of the complexes (3,5-ditBu-catechol vs. catechol) has been found to significantly influence the extent of monolayer surface coverage. Dye-sensitised solar cells using Pt(dcbpy)(tBu2Cat), 1a, and Pt(dcbpy)(pCat), 2a, as sensitisers, have been assembled, and photovoltaic measurements performed. The observed low, 0.02–0.07%, device efficiency of such DSSCs is attributed at least in part to the short excited state lifetime of the sensitisers, inherent to this class of complexes. The lifetime of the charge-transfer ML/LLCT excited state in Pt((COOiPr)2bpy)(3,5-di-tBu-catechol) was determined as 250 ps by picosecond time-resolved infrared spectroscopy, TRIR. The measured increase in device efficiency for 2a over 1a is consistent with a similar increase in the quantum yield of charge separation (where the complex acts as a donor and the semiconductor as an acceptor) determined by PAC, and is also proportional to the increased surface loading achieved with 2a. It is concluded that the relative efficiency of devices sensitised with these particular Pt(II) species is governed by the degree of surface coverage. Overall, this work demonstrates the use of Pt(diimine)(catecholate) complexes as potential photosensitizers in solar cells, and the first application of photoacoustic calorimetry to Pt(II) complexes in general
Synthesis, structural, DFT calculations and biological studies of rhodium and iridium complexes containing azine Schiff-base ligands
The reaction of [Cp*MCl2]2 (M = Rh/Ir) with N-Nʹ azine Schiff-base ligands (L1-L4) leads to the formation of mononuclear cationic half-sandwich complexes having the general formula [Cp*M(L)Cl]+ (1–8), (M = Rh/Ir and L = (2-hydroxy-4-methoxybenzylidene)2- pyridylamidrazone (L1), (2-hydroxybenzylidene)2-pyridylamidrazone (L2), (1-(2-hydroxyphenyl)ethylidene)2-pyridylamidrazone (L3) and (1-phenylethylidene)2-pyridylamidrazone (L4). All these complexes were isolated as their hexafluorophosphate salts and fully characterized by spectroscopic and analytical techniques. The molecular structure of complexes (1), (3), (4), (7) and (8) have been determined by single crystal X-ray crystallographic studies which displayed the coordination of the ligand to the metal in a bidentate N∩N fashion through nitrogen atom of pyridine and one azine nitrogen. The chemo-sensitivity activities of the complexes were evaluated against HT-29 (human colorectal cancer) cell line and non-cancer cell line ARPE-19 (human retinal epithelial cells) which revealed that the complexes are moderately cytotoxic to cancer cells over human cells although complex 5 was the most potent among all the compounds. Theoretical studies carried out using DFT and TD-DFT at B3LYP level shows good agreement with the experimental results
- …
