7 research outputs found

    Physical layer network coding based communication systems in frequency selective channels

    Get PDF
    PhD ThesisThe demand for wireless communications is growing every day which requiresmore speed and bandwidth. In two way relay networks (TWRN), physical layer network coding (PLNC) was proposed to double the bandwidth. A TWRN is a system where two end users exchange data through a middle node called the relay. The two signals are allowed to be physically added before being broadcasted back to the end users. This system can work smoothly in flat fading channels, but can not be applied straightforward in frequency selective channels. In a multipath multi-tap FIR channel, the inter-symbol interference (ISI) spreads through several symbols. In this case, the symbols at the relay are not just an addition of the sent symbols but also some of the previous symbols from both sides. This not only causes a traditional PLNC to fail but also a simple one equalizer system will not solve the problem. Three main methods have been proposed by other researchers. The OFDM based PLNC is the simplest in terms of implementation and complexity but suffers from the disadvantages of the OFDMlike cyclic prefix overhead and frequency offset. The main disadvantage, however is the relatively low BER performance because it is restricted to linear equalizers in the PLNC system. Another approach is pre-filtering or pre-equalization. This method also has some disadvantages like complexity, sensitivity to channel variation and the need of a feedback channel for both end nodes. Finally, the maximum likelihood sequence detector was also proposed but is restricted to BPSK modulation and exponentially rising complexity are major drawbacks. The philosophy in this work is to avoid these disadvantages by using a time domain based system. The DFE is the equalizer of choice here because it provides a non-trivial BER performance improvement with very little increase in complexity. In this thesis, the problem of frequency selective channels in PLNC systems can be solved by properly adjusting the design of the system including the DFE. The other option is to redesign the equalizer to meet that goal. An AF DFE system is proposed in this work that provides very low complexity especially at the relay with little sensitivity to channel changes. A multi-antenna DNF DFE system is also proposed here with an improved performance. Finally, a new equalizer is designed for very low complexity and cost DNF approach with little sacrifice of BER performance. Matlab was used for the simulations with Monte Carlo method to verify the findings of this work through finding the BER performance of each system. This thesis opens the door for future improvement on the PLNC system. More research needs to be done like testing the proposed systems in real practical implementation and also the effect of adding channel coding to these systems.Iraqi Government, Ministry of Higher Educatio

    Design and Analysis of OFDM System for Powerline Based Communication

    Get PDF
    Research on digital communication systems has been greatly developed in the past few years and offers a high quality of transmission in both wired and wireless communication environments. Coupled with advances in new modulation techniques, Orthogonal Frequency Division Multiplexing (OFDM) is a well-known digital multicarrier communication technique and one of the best methods of digital data transmission over a limited bandwidth. The main aim of this research is to design an OFDM modem for powerline-based communication in order to propose and examine a novel approach in comparing the different modulation order, different modulation type, application of Forward Error Correction (FEC) scheme and also application of different noise types and applying them to the two modelled channels, Additive White Gaussian Noise (AWGN) and Powerline modelled channel. This is an attempt to understand and recognise the most suitable technique for the transmission of message or image within a communication system. In doing so, MATLAB and embedded Digital Signal Processing (DSP) systems are used to simulate the operation of virtual transmitter and receiver. The simulation results presented in this project suggest that lower order modulation formats (Binary Phase Shift Keying (BPSK) and 4-Quadrature Amplitude Modulation (QAM)), are the most preferred modulation techniques (in both type and order) for their considerable performance. The results also indicated that, Convolutional Channel Encoding (CCE)-Soft and Block Channel Encoding (BCE)-Soft are by far the best encoding techniques (in FEC type) for their best performance in error detection and correction. Indeed, applying these techniques to the two modelled channels has proven very successful and will be accounted as a novel approach for the transmission of message or image within a powerline based communication system

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Spectrum measurement, sensing, analysis and simulation in the context of cognitive radio

    Get PDF
    The radio frequency (RF) spectrum is a scarce natural resource, currently regulated locally by national agencies. Spectrum has been assigned to different services and it is very difficult for emerging wireless technologies to gain access due to rigid spectmm policy and heavy opportunity cost. Current spectrum management by licensing causes artificial spectrum scarcity. Spectrum monitoring shows that many frequencies and times are unused. Dynamic spectrum access (DSA) is a potential solution to low spectrum efficiency. In DSA, an unlicensed user opportunistically uses vacant licensed spectrum with the help of cognitive radio. Cognitive radio is a key enabling technology for DSA. In a cognitive radio system, an unlicensed Secondary User (SU) identifies vacant licensed spectrum allocated to a Primary User (PU) and uses it without harmful interference to the PU. Cognitive radio increases spectrum usage efficiency while protecting legacy-licensed systems. The purpose of this thesis is to bring together a group of CR concepts and explore how we can make the transition from conventional radio to cognitive radio. Specific goals of the thesis are firstly the measurement of the radio spectrum to understand the current spectrum usage in the Humber region, UK in the context of cognitive radio. Secondly, to characterise the performance of cyclostationary feature detectors through theoretical analysis, hardware implementation, and real-time performance measurements. Thirdly, to mitigate the effect of degradation due to multipath fading and shadowing, the use of -wideband cooperative sensing techniques using adaptive sensing technique and multi-bit soft decision is proposed, which it is believed will introduce more spectral opportunities over wider frequency ranges and achieve higher opportunistic aggregate throughput.Understanding spectrum usage is the first step toward the future deployment of cognitive radio systems. Several spectrum usage measurement campaigns have been performed, mainly in the USA and Europe. These studies show locality and time dependence. In the first part of this thesis a spectrum usage measurement campaign in the Humber region, is reported. Spectrum usage patterns are identified and noise is characterised. A significant amount of spectrum was shown to be underutilized and available for the secondary use. The second part addresses the question: how can you tell if a spectrum channel is being used? Two spectrum sensing techniques are evaluated: Energy Detection and Cyclostationary Feature Detection. The performance of these techniques is compared using the measurements performed in the second part of the thesis. Cyclostationary feature detection is shown to be more robust to noise. The final part of the thesis considers the identification of vacant channels by combining spectrum measurements from multiple locations, known as cooperative sensing. Wideband cooperative sensing is proposed using multi resolution spectrum sensing (MRSS) with a multi-bit decision technique. Next, a two-stage adaptive system with cooperative wideband sensing is proposed based on the combination of energy detection and cyclostationary feature detection. Simulations using the system above indicate that the two-stage adaptive sensing cooperative wideband outperforms single site detection in terms of detection success and mean detection time in the context of wideband cooperative sensing

    Active Learning in Cognitive Radio Networks

    Get PDF
    In this thesis, numerous Machine Learning (ML) applications for Cognitive Radios Networks (CRNs) are developed and presented which facilitate the e cient spectral coexistence of a legacy system, the Primary Users (PUs), and a CRN, the Secondary Users (SUs). One way to better exploit the capacity of the legacy system frequency band is to consider a coexistence scenario using underlay Cognitive Radio (CR) techniques, where SUs may transmit in the frequency band of the PU system as long as the induced to the PU interference is under a certain limit and thus does not harmfully a ect the legacy system operability

    2FSK modulation for multiuser physical-layer network coding network

    No full text
    corecore