13,464 research outputs found

    Dislocation scattering in a two-dimensional electron gas

    Full text link
    A theory of scattering by charged dislocation lines in a two-dimensional electron gas (2DEG) is developed. The theory is directed towards understanding transport in AlGaN/GaN high-electron-mobility transistors (HEMT), which have a large number of line dislocations piercing through the 2DEG. The scattering time due to dislocations is derived for a 2DEG in closed form. This work identifies dislocation scattering as a mobility-limiting scattering mechanism in 2DEGs with high dislocation densities. The insensitivity of the 2DEG (as compared to bulk) to dislocation scattering is explained by the theory.Comment: 6 pages, 3 figure

    Proximity and Josephson effects in superconductor - two dimensional electron gas planar junctions

    Full text link
    The DC Josephson effect is theoretically studied in a planar junction in which a two dimensional electron gas (2DEG) infinite in lateral directions is in contact with two superconducting electrodes placed on top of the 2DEG. An energy gap in the excitation spectrum is created in the 2DEG due to the proximity effect. It is shown that under certain conditions, the region of the 2DEG underneath the superconductors is analogous to a superconducting region with an order parameter εgexp(iϕ)\varepsilon_g\exp(i\phi)\/, where εg (εg<Δ)\varepsilon_g~(\varepsilon_g<\Delta)\/ depends on the interface transmittance and the Fermi velocity mismatch between the superconductors and the 2DEG.Comment: 9 pages REVTeX, 5 figures available on reques

    Probing Spin-Polarized Currents in the Quantum Hall Regime

    Full text link
    An experiment to probe spin-polarized currents in the quantum Hall regime is suggested that takes advantage of the large Zeeman-splitting in the paramagnetic diluted magnetic semiconductor zinc manganese selenide (Zn1x_{1-x}Mnx_xSe). In the proposed experiment spin-polarized electrons are injected by ZnMnSe-contacts into a gallium arsenide (GaAs) two-dimensional electron gas (2DEG) arranged in a Hall bar geometry. We calculated the resulting Hall resistance for this experimental setup within the framework of the Landauer-B\"uttiker formalism. These calculations predict for 100% spininjection through the ZnMnSe-contacts a Hall resistance twice as high as in the case of no spin-polarized injection of charge carriers into a 2DEG for filling factor ν=2\nu=2. We also investigated the influence of the equilibration of the spin-polarized electrons within the 2DEG on the Hall resistance. In addition, in our model we expect no coupling between the contact and the 2DEG for odd filling factors of the 2DEG for 100% spininjection, because of the opposite sign of the g-factors of ZnMnSe and GaAs.Comment: 7 pages, 5 figure

    Andreev reflection and strongly enhanced magnetoresistance oscillations in GaInAs/InP heterostructures with superconducting contacts

    Get PDF
    We study the magnetotransport in small hybrid junctions formed by high-mobility GaInAs/InP heterostructures coupled to superconducting (S) and normal metal (N) terminals. Highly transmissive superconducting contacts to a two-dimensional electron gas (2DEG) located in a GaInAs/InP heterostructure are realized by using a Au/NbN layer system. The magnetoresistance of the S/2DEG/N structures is studied as a function of dc bias current and temperature. At bias currents below a critical value, the resistance of the S/2DEG/N structures develops a strong oscillatory dependence on the magnetic field, with an amplitude of the oscillations considerably larger than that of the reference N/2DEG/N structures. The experimental results are qualitatively explained by taking Andreev reflection in high magnetic fields into account.Comment: 5 pages, 5 figure

    Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain

    Full text link
    Recently a metallic state was discovered at the interface between insulating oxides, most notably LaAlO3 and SrTiO3. Properties of this two-dimensional electron gas (2DEG) have attracted significant interest due to its potential applications in nanoelectronics. Control over this carrier density and mobility of the 2DEG is essential for applications of these novel systems, and may be achieved by epitaxial strain. However, despite the rich nature of strain effects on oxide materials properties, such as ferroelectricity, magnetism, and superconductivity, the relationship between the strain and electrical properties of the 2DEG at the LaAlO3/SrTiO3 heterointerface remains largely unexplored. Here, we use different lattice constant single crystal substrates to produce LaAlO3/SrTiO3 interfaces with controlled levels of biaxial epitaxial strain. We have found that tensile strained SrTiO3 destroys the conducting 2DEG, while compressively strained SrTiO3 retains the 2DEG, but with a carrier concentration reduced in comparison to the unstrained LaAlO3/SrTiO3 interface. We have also found that the critical LaAlO3 overlayer thickness for 2DEG formation increases with SrTiO3 compressive strain. Our first-principles calculations suggest that a strain-induced electric polarization in the SrTiO3 layer is responsible for this behavior. It is directed away from the interface and hence creates a negative polarization charge opposing that of the polar LaAlO3 layer. This both increases the critical thickness of the LaAlO3 layer, and reduces carrier concentration above the critical thickness, in agreement with our experimental results. Our findings suggest that epitaxial strain can be used to tailor 2DEGs properties of the LaAlO3/SrTiO3 heterointerface
    corecore