25 research outputs found

    Vibration signal de-noising based on empirical wavelet transform autocorrelation analysis

    Get PDF
    In diesel engine fault diagnosis, non-stationary vibration signal is easily disturbed by strong noise. In view of the shortcomings of empirical mode decomposition (EMD) and wavelet transform in de-noising, a de-noising method is proposed, which is Empirical Wavelet Transform (EWT) autocorrelation analysis. Taking advantages of EMD and wavelet transform, the Fourier spectrum is adaptively divided by EWT, and the intrinsic mode components of different frequency are extracted through constructed wavelet filter, and the method can effectively eliminate modal aliasing and solve adaptive problems in wavelet de-noising. At the same time, autocorrelation analysis can make the random noise decay to zero, and the modal components with high frequency random noise are dealt by autocorrelation analysis. The method is used to de-noising and compared the de-noising effect of EWT and EMD. Results show that the method can effectively decompose the intrinsic mode component with less number, and there is no false mode, and the de-noising effect is better than EMD de-noising. The method is feasible and effective in de-noising by vibration signals of diesel engine

    Signal processing with Fourier analysis, novel algorithms and applications

    Get PDF
    Fourier analysis is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions, also analogously known as sinusoidal modeling. The original idea of Fourier had a profound impact on mathematical analysis, physics and engineering because it diagonalizes time-invariant convolution operators. In the past signal processing was a topic that stayed almost exclusively in electrical engineering, where only the experts could cancel noise, compress and reconstruct signals. Nowadays it is almost ubiquitous, as everyone now deals with modern digital signals. Medical imaging, wireless communications and power systems of the future will experience more data processing conditions and wider range of applications requirements than the systems of today. Such systems will require more powerful, efficient and flexible signal processing algorithms that are well designed to handle such needs. No matter how advanced our hardware technology becomes we will still need intelligent and efficient algorithms to address the growing demands in signal processing. In this thesis, we investigate novel techniques to solve a suite of four fundamental problems in signal processing that have a wide range of applications. The relevant equations, literature of signal processing applications, analysis and final numerical algorithms/methods to solve them using Fourier analysis are discussed for different applications in the electrical engineering/computer science. The first four chapters cover the following topics of central importance in the field of signal processing: • Fast Phasor Estimation using Adaptive Signal Processing (Chapter 2) • Frequency Estimation from Nonuniform Samples (Chapter 3) • 2D Polar and 3D Spherical Polar Nonuniform Discrete Fourier Transform (Chapter 4) • Robust 3D registration using Spherical Polar Discrete Fourier Transform and Spherical Harmonics (Chapter 5) Even though each of these four methods discussed may seem completely disparate, the underlying motivation for more efficient processing by exploiting the Fourier domain signal structure remains the same. The main contribution of this thesis is the innovation in the analysis, synthesis, discretization of certain well known problems like phasor estimation, frequency estimation, computations of a particular non-uniform Fourier transform and signal registration on the transformed domain. We conduct propositions and evaluations of certain applications relevant algorithms such as, frequency estimation algorithm using non-uniform sampling, polar and spherical polar Fourier transform. The techniques proposed are also useful in the field of computer vision and medical imaging. From a practical perspective, the proposed algorithms are shown to improve the existing solutions in the respective fields where they are applied/evaluated. The formulation and final proposition is shown to have a variety of benefits. Future work with potentials in medical imaging, directional wavelets, volume rendering, video/3D object classifications, high dimensional registration are also discussed in the final chapter. Finally, in the spirit of reproducible research we release the implementation of these algorithms to the public using Github

    Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Current's FFT

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] The discrete wavelet transform (DWT) has attracted a rising interest in recent years to monitor the condition of rotating electrical machines in transient regime, because it can reveal the time-frequency behavior of the current's components associated to fault conditions. Nevertheless, the implementation of the wavelet transform (WT), especially on embedded or low-power devices, faces practical problems, such as the election of the mother wavelet, the tuning of its parameters, the coordination between the sampling frequency and the levels of the transform, and the construction of the bank of wavelet filters, with highly different bandwidths that constitute the core of the DWT. In this paper, a diagnostic system using the harmonic WT is proposed, which can alleviate these practical problems because it is built using a single fast Fourier transform of one phase's current. The harmonic wavelet was conceived to perform musical analysis, hence its name, and it has spread into many fields, but, to the best of the authors' knowledge, it has not been applied before to perform fault diagnosis of rotating electrical machines in transient regime using the stator current. The simplicity and performance of the proposed approach are assessed by comparison with other types of WTs, and it has been validated with the experimental diagnosis of a 3.15-MW induction motor with broken bars.This work was supported by the Spanish Ministerio de Ciencia e Innovacion through the Programa Nacional de Proyectos de Investigacion Fundamental under Project DPI2011-23740. The Associate Editor coordinating the review process was Dr. Ruqiang Yan.Sapena-Bano, A.; Pineda-Sanchez, M.; Puche-Panadero, R.; Martinez-Roman, J.; Matic, D. (2015). Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Current's FFT. IEEE Transactions on Instrumentation and Measurement. 64(11):3137-3146. https://doi.org/10.1109/TIM.2015.2444240S31373146641

    Synchrosqueezed Wave Packet Transforms and Diffeomorphism Based Spectral Analysis for 1D General Mode Decompositions

    Full text link
    This paper develops new theory and algorithms for 1D general mode decompositions. First, we introduce the 1D synchrosqueezed wave packet transform and prove that it is able to estimate the instantaneous information of well-separated modes from their superposition accurately. The synchrosqueezed wave packet transform has a better resolution than the synchrosqueezed wavelet transform in the time-frequency domain for separating high frequency modes. Second, we present a new approach based on diffeomorphisms for the spectral analysis of general shape functions. These two methods lead to a framework for general mode decompositions under a weak well-separation condition and a well different condition. Numerical examples of synthetic and real data are provided to demonstrate the fruitful applications of these methods.Comment: 39 page
    corecore