47 research outputs found

    A peer to peer approach to large scale information monitoring

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    Traffic eavesdropping based scheme to deliver time-sensitive data in sensor networks

    Get PDF
    Due to the broadcast nature of wireless channels, neighbouring sensor nodes may overhear packets transmissions from each other even if they are not the intended recipients of these transmissions. This redundant packet reception leads to unnecessary expenditure of battery energy of the recipients. Particularly in highly dense sensor networks, overhearing or eavesdropping overheads can constitute a significant fraction of the total energy consumption. Since overhearing of wireless traffic is unavoidable and sometimes essential, a new distributed energy efficient scheme is proposed in this paper. This new scheme exploits the inevitable overhearing effect as an effective approach in order to collect the required information to perform energy efficient delivery for data aggregation. Based on this approach, the proposed scheme achieves moderate energy consumption and high packet delivery rate notwithstanding the occurrence of high link failure rates. The performance of the proposed scheme is experimentally investigated a testbed of TelosB motes in addition to ns-2 simulations to validate the performed experiments on large-scale network

    Scaling a Shared Object Space to the Internet: Case Study of Virat.

    Full text link

    Automated Cluster-Based Web Service Performance Tuning

    Get PDF
    In this paper, we apply the Active Harmony system to improve the performance of a cluster-based web service system. The performance improvement cannot easily be achieved by tuning individual components for such a system. The experimental results show that there is no single configuration for the system that performs well for all kinds of workloads. By tuning the parameters, the Active Harmony helps the system adapt to different workloads and improve the performance up to 16%. For scalability, we demonstrate how to reduce the time when tuning a large system with many tunable parameters. Finally an algorithm is proposed to automatically adjust the structure of cluster-based web systems, and the system throughput is improved up to 70% using this technology. (UMIACS-TR-2003-84

    Optimistic replication

    Get PDF
    Data replication is a key technology in distributed data sharing systems, enabling higher availability and performance. This paper surveys optimistic replication algorithms that allow replica contents to diverge in the short term, in order to support concurrent work practices and to tolerate failures in low-quality communication links. The importance of such techniques is increasing as collaboration through wide-area and mobile networks becomes popular. Optimistic replication techniques are different from traditional “pessimistic ” ones. Instead of synchronous replica coordination, an optimistic algorithm propagates changes in the background, discovers conflicts after they happen and reaches agreement on the final contents incrementally. We explore the solution space for optimistic replication algorithms. This paper identifies key challenges facing optimistic replication systems — ordering operations, detecting and resolving conflicts, propagating changes efficiently, and bounding replica divergence — and provides a comprehensive survey of techniques developed for addressing these challenges

    A distributed activity scheduling algorithm for wireless sensor networks with partial coverage

    Get PDF
    One of the most important design objectives in wireless sensor networks (WSN) is minimizing the energy consumption since these networks are expected to operate in harsh conditions where the recharging of batteries is impractical, if not impossible. The sleep scheduling mechanism allows sensors to sleep intermittently in order to reduce energy consumption and extend network lifetime. In applications where 100% coverage of the network field is not crucial, allowing the coverage to drop below full coverage while keeping above a predetermined threshold, i.e., partial coverage, can further increase the networklifetime. In this paper, we develop the distributed adaptivesleep scheduling algorithm (DASSA) for WSNs with partial coverage. DASSA does not require locationinformation of sensors while maintaining connectivity andsatisfying a user defined coverage target. In DASSA, nodesuse the residual energy levels and feedback from the sinkfor scheduling the activity of their neighbors. This feedbackmechanism reduces the randomness in scheduling thatwould otherwise occur due to the absence of locationinformation. The performance of DASSA is compared withan integer linear programming (ILP) based centralizedsleep scheduling algorithm (CSSA), which is devised tofind the maximum number of rounds the network cansurvive assuming that the location information of all sensorsis available. DASSA is also compared with thedecentralized DGT algorithm. DASSA attains networklifetimes up to 92% of the centralized solution and it achieves significantly longer lifetimes compared with the DGT algorithm. © Springer Science+Business Media, LLC 2008
    corecore