7,183 research outputs found

    3D Micron-scale Imaging of the Cortical Bone Canal Network in Human Osteogenesis Imperfecta (OI)

    Get PDF
    Osteogenesis imperfecta (OI) is a genetic disorder leading to increased bone fragility. Recent work has shown that the hierarchical structure of bone plays an important role in determining its mechanical properties and resistance to fracture. The current study represents one of the first attempts to characterize the 3D structure and composition of cortical bone in OI at the micron-scale. A total of 26 pediatric bone fragments from 18 individuals were collected during autopsy (Nc=5) or routing orthopaedic procedures (NOI=13) and imaged by microtomography with a synchrotron light source (SRµCT) for several microstructural parameters including cortical porosity (Ca.V/TV), canal surface to tissue volume (Ca.S/TV), canal diameter (Ca.Dm), canal separation (Ca.Sp), canal connectivity density (Ca.ConnD), and volumetric tissue mineral density (TMD). Results indicated significant differences in all imaging parameters between pediatric controls and OI tissue, with OI bone showing drastically increased cortical porosity, canal diameter, and connectivity. Preliminary mechanical testing revealed a possible link between cortical porosity and strength. Together these results suggest that the pore network in OI contributes greatly to its reduced mechanical properties

    Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    Get PDF
    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles ( such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical 'wet' methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure

    A Study on the Origin of Peroxisomes: Possibility of Actinobacteria Symbiosis

    Get PDF
    The origin of peroxisomes as having developed from the endoplasmic reticulum (ER) was proposed on the basis of the similarity between some peroxisomal proteins and ER proteins, and the localization of some peroxisomal proteins on the ER. To study the evolutionary distance between peroxisomes and ER and Prokaryotes, we carried out a phylogenetic analysis of CDC48 (cell division control 48) and its homologs, including ER-localized CDC48, CDC48 homologs in Prokaryotes and peroxisome-localized PEX1 and PEX6. A similarity search analysis of peroxisomal protein sequences to prokaryotic protein sequences using BLAST at several thresholds (E-values) was also done. We propose Actinobacteria symbiosis for the origin of peroxisomes based on the following evidence: (1) PEX1 and PEX6 are close in distance to CDC48 homologs in Actinobacteria, and these distances are closer than to ER-localized CDC48. (2) Actinobacteria proteins show the highest degree of similarity to peroxisomal proteins compared with other prokaryotes

    Rewriting Human History and Empowering Indigenous Communities with Genome Editing Tools.

    Get PDF
    Appropriate empirical-based evidence and detailed theoretical considerations should be used for evolutionary explanations of phenotypic variation observed in the field of human population genetics (especially Indigenous populations). Investigators within the population genetics community frequently overlook the importance of these criteria when associating observed phenotypic variation with evolutionary explanations. A functional investigation of population-specific variation using cutting-edge genome editing tools has the potential to empower the population genetics community by holding "just-so" evolutionary explanations accountable. Here, we detail currently available precision genome editing tools and methods, with a particular emphasis on base editing, that can be applied to functionally investigate population-specific point mutations. We use the recent identification of thrifty mutations in the CREBRF gene as an example of the current dire need for an alliance between the fields of population genetics and genome editing

    Experimental Synthetic Aperture Radar with Dynamic Metasurfaces

    Full text link
    We investigate the use of a dynamic metasurface as the transmitting antenna for a synthetic aperture radar (SAR) imaging system. The dynamic metasurface consists of a one-dimensional microstrip waveguide with complementary electric resonator (cELC) elements patterned into the upper conductor. Integrated into each of the cELCs are two diodes that can be used to shift each cELC resonance out of band with an applied voltage. The aperture is designed to operate at K band frequencies (17.5 to 20.3 GHz), with a bandwidth of 2.8 GHz. We experimentally demonstrate imaging with a fabricated metasurface aperture using existing SAR modalities, showing image quality comparable to traditional antennas. The agility of this aperture allows it to operate in spotlight and stripmap SAR modes, as well as in a third modality inspired by computational imaging strategies. We describe its operation in detail, demonstrate high-quality imaging in both 2D and 3D, and examine various trade-offs governing the integration of dynamic metasurfaces in future SAR imaging platforms

    One-step volumetric additive manufacturing of complex polymer structures.

    Get PDF
    Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s

    Redox-Active Nanomaterials For Nanomedicine Applications

    Get PDF
    Nanomedicine utilizes the remarkable properties of nanomaterials for the diagnosis, treatment, and prevention of disease. Many of these nanomaterials have been shown to have robust antioxidative properties, potentially functioning as strong scavengers of reactive oxygen species. Conversely, several nanomaterials have also been shown to promote the generation of reactive oxygen species, which may precipitate the onset of oxidative stress, a state that is thought to contribute to the development of a variety of adverse conditions. As such, the impacts of nanomaterials on biological entities are often associated with and influenced by their specific redox properties. In this review, we overview several classes of nanomaterials that have been or projected to be used across a wide range of biomedical applications, with discussion focusing on their unique redox properties. Nanomaterials examined include iron, cerium, and titanium metal oxide nanoparticles, gold, silver, and selenium nanoparticles, and various nanoscale carbon allotropes such as graphene, carbon nanotubes, fullerenes, and their derivatives/variations. Principal topics of discussion include the chemical mechanisms by which the nanomaterials directly interact with biological entities and the biological cascades that are thus indirectly impacted. Selected case studies highlighting the redox properties of nanomaterials and how they affect biological responses are used to exemplify the biologically-relevant redox mechanisms for each of the described nanomaterials
    corecore