10 research outputs found

    Use Case Based Blended Teaching of IIoT Cybersecurity in the Industry 4.0 Era

    Get PDF
    [Abstract] Industry 4.0 and Industrial Internet of Things (IIoT) are paradigms that are driving current industrial revolution by connecting to the Internet industrial machinery, management tools or products so as to control and gather data about them. The problem is that many IIoT/Industry 4.0 devices have been connected to the Internet without considering the implementation of proper security measures, thus existing many examples of misconfigured or weakly protected devices. Securing such systems requires very specific skills, which, unfortunately, are not taught extensively in engineering schools. This article details how Industry 4.0 and IIoT cybersecurity can be learned through practical use cases, making use of a methodology that allows for carrying out audits to students that have no previous experience in IIoT or industrial cybersecurity. The described teaching approach is blended and has been imparted at the University of A Coruña (Spain) during the last years, even during the first semester of 2020, when the university was closed due to the COVID-19 pandemic lockdown. Such an approach is supported by online tools like Shodan, which ease the detection of vulnerable IIoT devices. The feedback results provided by the students show that they consider useful the proposed methodology, which allowed them to find that 13% of the IIoT/Industry 4.0 systems they analyzed could be accessed really easily. In addition, the obtained teaching results indicate that the established course learning outcomes are accomplished. Therefore, this article provides useful guidelines for teaching industrial cybersecurity and thus train the next generation of security researchers and developers.This work has been funded by the Xunta de Galicia (ED431G 2019/01), the Agencia Estatal de Investigación of Spain (TEC2016-75067-C4-1-R, RED2018-102668-T, PID2019-104958RB-C42) and ERDF funds of the EU (AEI/FEDER, UE)Xunta de Galicia; ED431G 2019/0

    Multimodal Technologies in Precision Education: Providing New Opportunities or Adding More Challenges?

    Get PDF
    Personalized or precision education (PE) considers the integration of multimodal technologies to tailor individuals’ learning experiences based on their preferences and needs. To identify the impact that emerging multimodal technologies have on personalized education, we reviewed recent implementations and applications of systems (e.g., MOOCs, serious games, artificial intelligence, learning management systems, mobile applications, augmented/virtual reality, classroom technologies) that integrate such features. Our findings revealed that PE techniques could leverage the instructional potential of educational platforms and tools by facilitating students’ knowledge acquisition and skill development. The added value of PE is also extended beyond the online digital learning context, as positive outcomes were also identified in blended/face-to-face learning scenarios, with multiple connections being discussed between the impact of PE on student efficacy, achievement, and well-being. In line with the recommendations and suggestions that supporters of PE make, we provide implications for research and practice as well as ground for policy formulation and reformation on how multimodal technologies can be integrated into the educational context.</p

    A Closer Look into Recent Video-based Learning Research: A Comprehensive Review of Video Characteristics, Tools, Technologies, and Learning Effectiveness

    Full text link
    People increasingly use videos on the Web as a source for learning. To support this way of learning, researchers and developers are continuously developing tools, proposing guidelines, analyzing data, and conducting experiments. However, it is still not clear what characteristics a video should have to be an effective learning medium. In this paper, we present a comprehensive review of 257 articles on video-based learning for the period from 2016 to 2021. One of the aims of the review is to identify the video characteristics that have been explored by previous work. Based on our analysis, we suggest a taxonomy which organizes the video characteristics and contextual aspects into eight categories: (1) audio features, (2) visual features, (3) textual features, (4) instructor behavior, (5) learners activities, (6) interactive features (quizzes, etc.), (7) production style, and (8) instructional design. Also, we identify four representative research directions: (1) proposals of tools to support video-based learning, (2) studies with controlled experiments, (3) data analysis studies, and (4) proposals of design guidelines for learning videos. We find that the most explored characteristics are textual features followed by visual features, learner activities, and interactive features. Text of transcripts, video frames, and images (figures and illustrations) are most frequently used by tools that support learning through videos. The learner activity is heavily explored through log files in data analysis studies, and interactive features have been frequently scrutinized in controlled experiments. We complement our review by contrasting research findings that investigate the impact of video characteristics on the learning effectiveness, report on tasks and technologies used to develop tools that support learning, and summarize trends of design guidelines to produce learning video

    Challenges for engineering students working with authentic complex problems

    Get PDF
    Engineers are important participants in solving societal, environmental and technical problems. However, due to an increasing complexity in relation to these problems new interdisciplinary competences are needed in engineering. Instead of students working with monodisciplinary problems, a situation where students work with authentic complex problems in interdisciplinary teams together with a company may scaffold development of new competences. The question is: What are the challenges for students structuring the work on authentic interdisciplinary problems? This study explores a three-day event where 7 students from Aalborg University (AAU) from four different faculties and one student from University College North Denmark (UCN), (6th-10th semester), worked in two groups at a large Danish company, solving authentic complex problems. The event was structured as a Hackathon where the students for three days worked with problem identification, problem analysis and finalizing with a pitch competition presenting their findings. During the event the students had workshops to support the work and they had the opportunity to use employees from the company as facilitators. It was an extracurricular activity during the summer holiday season. The methodology used for data collection was qualitative both in terms of observations and participants’ reflection reports. The students were observed during the whole event. Findings from this part of a larger study indicated, that students experience inability to transfer and transform project competences from their previous disciplinary experiences to an interdisciplinary setting

    Exploring the practical use of a collaborative robot for academic purposes

    Get PDF
    This article presents a set of experiences related to the setup and exploration of potential educational uses of a collaborative robot (cobot). The basic principles that have guided the work carried out have been three. First and foremost, study of all the functionalities offered by the robot and exploration of its potential academic uses both in subjects focused on industrial robotics and in subjects of related disciplines (automation, communications, computer vision). Second, achieve the total integration of the cobot at the laboratory, seeking not only independent uses of it but also seeking for applications (laboratory practices) in which the cobot interacts with some of the other devices already existing at the laboratory (other industrial robots and a flexible manufacturing system). Third, reuse of some available components and minimization of the number and associated cost of required new components. The experiences, carried out following a project-based learning methodology under the framework of bachelor and master subjects and thesis, have focused on the integration of mechanical, electronic and programming aspects in new design solutions (end effector, cooperative workspace, artificial vision system integration) and case studies (advanced task programming, cybersecure communication, remote access). These experiences have consolidated the students' acquisition of skills in the transition to professional life by having the close collaboration of the university faculty with the experts of the robotics company.Postprint (published version

    The Increasing Necessity of Skills Diversity in Team Teaching

    Get PDF
    corecore