31 research outputs found

    VEHIOT: evaluation of smartphones as data acquisition systems to reduce risk situations in commercial vehicles

    Get PDF
    Proceeding of: 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES): Madrid, 12-18 Septermber 2018.Vehicle dynamics studies are an indispensable characteristic to improve the vehicle stability and handling. To fulfil this requirement, control systems are included in commercial vehicles nowadays. These control systems consider variables such as lateral acceleration, roll rate and sideslip angle, that can be directly obtained from sensors or estimated from the collected data. With the objective of incorporating control systems without increasing the price of these vehicles, it is necessary to develop low-cost embedded systems, capable of acquiring data from a diversity of sensors to execute estimations and to perform control actions under real-time constraints. The increase of capabilities and features provided by smartphones enable them as data acquisition and processing devices. In this paper, an analysis in terms of reliability, accuracy and acquisition have been performed for two different smartphones in order to study the possibility to use this kind of devices as a low-cost sensing platform for vehicle dynamic applications. Each smartphone used in this study is classified into a different category (low-end or high-end device) depending on not only its price but also its specifications. Both yaw rate and lateral acceleration have been analyzed in order to quantify the performance of each smartphone. These variables have a direct influence on the vehicle lateral dynamics. Experimental tests have been carried out in a real scenario and the VBOX IMU connected with the VBOX 3i data logger of Racelogic has been used as the ground truth.The authors gratefully acknowledge the funding by Ministerio de Economa y Competitividad, Spain, under the grant TRA2013-48030-C2-1-R

    Analysis of the Influence of Training Data on Road User Detection

    Get PDF
    In this paper, we discuss the relevance of training data on modern object detectors used on onboard applications. Whereas modern deep learning techniques require large amounts of data, datasets with typical scenarios for autonomous vehicles are scarce and have a reduced number of samples. We conduct a comprehensive set of experiments to understand the effect of using a combination of two relatively small datasets to train an end-to-end object detector, based on the popular Faster R-CNN and enhanced with orientation estimation capabilities. We also test the adequacy of training models using partially available ground-truth labels, as a consequence of combining datasets aimed at different applications. Data augmentation is also introduced into the training pipeline. Results show a significant performance improvement in our exemplary case as a result of the higher variability of the training samples, thus opening a new way to improve the detection performance independently from the detector architecture.This work was supported by the Spanish Government through the CICYT projects TRA2015-63708-R and TRA2016-78886-C3-1-R, and the Comunidad de Madrid through SEGVAUTO-TRIES (S2013/MIT-2713).Publicad

    A Research Platform for Autonomous Vehicles Technologies Research in the Insurance Sector

    Get PDF
    This article belongs to the Special Issue Intelligent Transportation SystemsThis work presents a novel platform for autonomous vehicle technologies research for the insurance sector. The platform has been collaboratively developed by the insurance company MAPFRE-CESVIMAP, Universidad Carlos III de Madrid and INSIA of the Universidad Politécnica de Madrid. The high-level architecture and several autonomous vehicle technologies developed using the framework of this collaboration are introduced and described in this work. Computer vision technologies for environment perception, V2X communication capabilities, enhanced localization, human–machine interaction and self awareness are among the technologies which have been developed and tested. Some use cases that validate the technologies presented in the platform are also presented; these use cases include public demonstrations, tests of the technologies and international competitions for self-driving technologies.Research was supported by the Spanish Government through the CICYT projects (TRA2016-78886-C3-1-R and RTI2018-096036-B-C21) and the Comunidad de Madrid through SEGVAUTO-4.0-CM (P2018/EMT-4362) and PEAVAUTO-CM-UC3M

    On Training Road Surface Classifiers by Data Augmentation

    Full text link
    [EN] It is demonstrated that data augmentation is a promising approach to reduce the size of the captured dataset required for training automatic road surface classifiers. The context is on-board systems for autonomous or semi-autonomous driving assistance: automatic power-assisted steering. Evidence is obtained by extensive experiments involving multiple captures from a 10-channel multisensor deployment: three channels from the accelerometer (acceleration in the X, Y, and Z axes); three microphone channels; two speed channels; and the torque and position of the handwheel. These captures were made under different settings: three worm-gear interface configurations; hands on or off the wheel; vehicle speed (constant speed of 10, 15,20, 30 km/h, or accelerating from 0 to 30 km/h); and road surface (smooth flat asphalt, stripes, or cobblestones). It has been demonstrated in the experiments that data augmentation allows a reduction by an approximate factor of 1.5 in the size of the captured training dataset.This research was funded by MCIN/AEI/10.13039/501100011033 and by the European Union, grant number TEC2017-84743-P.Salazar Afanador, A.; Rodríguez, A.; Vargas, N.; Vergara Domínguez, L. (2022). On Training Road Surface Classifiers by Data Augmentation. Applied Sciences. 12(7):1-11. https://doi.org/10.3390/app1207342311112

    Automated driving: A literature review of the take over request in conditional automation

    Get PDF
    This article belongs to the Special Issue Autonomous Vehicles TechnologyIn conditional automation (level 3), human drivers can hand over the Driving Dynamic Task (DDT) to the Automated Driving System (ADS) and only be ready to resume control in emergency situations, allowing them to be engaged in non-driving related tasks (NDRT) whilst the vehicle operates within its Operational Design Domain (ODD). Outside the ODD, a safe transition process from the ADS engaged mode to manual driving should be initiated by the system through the issue of an appropriate Take Over Request (TOR). In this case, the driver's state plays a fundamental role, as a low attention level might increase driver reaction time to take over control of the vehicle. This paper summarizes and analyzes previously published works in the field of conditional automation and the TOR process. It introduces the topic in the appropriate context describing as well a variety of concerns that are associated with the TOR. It also provides theoretical foundations on implemented designs, and report on concrete examples that are targeted towards designers and the general public. Moreover, it compiles guidelines and standards related to automation in driving and highlights the research gaps that need to be addressed in future research, discussing also approaches and limitations and providing conclusions.This work was funded by the Austrian Ministry for Climate Action, Environment, Energy, Mobility, Innovation, and Technology (BMK) Endowed Professorship for Sustainable Transport Logistics 4.0; the Spanish Ministry of Economy, Industry and Competitiveness under the TRA201563708-R and TRA2016-78886-C3-1-R project; open access funding by the Johannes Kepler University Linz

    A Feasibility Study of a Traffic Supervision System Based on 5G Communication

    Get PDF
    At present, autonomous driving vehicles are designed in an ego-vehicle manner. The vehicles gather information from their on-board sensors, build an environment model from it and plan their movement based on this model. Mobile network connections are used for non-mission-critical tasks and maintenance only. In this paper, we propose a connected autonomous driving system, where self-driving vehicles exchange data with a so-called road supervisor. All vehicles under supervision provide their current position, velocity and other valuable data. Using the received information, the supervisor provides a recommended trajectory for every vehicle, coordinated with all other vehicles. Since the supervisor has a much better overview of the situation on the road, more elaborate decisions, compared to each individual autonomous vehicle planning for itself, are possible. Experiments show that our approach works efficiently and safely when running our road supervisor on top of a popular traffic simulator. Furthermore, we show the feasibility of offloading the trajectory planning task into the network when using ultra-low-latency 5G networks

    LMI-based H∞ controller of vehicle roll stability control systems with input and output delays

    Get PDF
    This article belongs to the Section Physical Sensors.Many of the current research works are focused on the development of different control systems for commercial vehicles in order to reduce the incidence of risky driving situations, while also improving stability and comfort. Some works are focused on developing low-cost embedded systems with enough accuracy, reliability, and processing time. Previous research works have analyzed the integration of low-cost sensors in vehicles. These works demonstrated the feasibility of using these systems, although they indicate that this type of low-cost kit could present relevant delays and noise that must be compensated to improve the performance of the device. For this purpose, it is necessary design controllers for systems with input and output delays. The novelty of this work is the development of an LMI-Based H∞ output-feedback controller that takes into account the effect of delays in the network, both on the sensor side and the actuator side, on RSC (Roll Stability Control) systems. The controller is based on an active suspension with input and output delays, where the anti-roll moment is used as a control input and the roll rate as measured data, both with delays. This controller was compared with a controller system with a no-delay consideration that was experiencing similar delays. The comparison was made through simulation tests with a validated vehicle on the TruckSim® software.This work was supported by the FEDER/Ministry of Science and Innovation-Agencia Estatal de Investigacion (AEI) of the Government of Spain through the project [RTI2018-095143-B-C21]

    A systematic review of perception system and simulators for autonomous vehicles research

    Get PDF
    This paper presents a systematic review of the perception systems and simulators for autonomous vehicles (AV). This work has been divided into three parts. In the first part, perception systems are categorized as environment perception systems and positioning estimation systems. The paper presents the physical fundamentals, principle functioning, and electromagnetic spectrum used to operate the most common sensors used in perception systems (ultrasonic, RADAR, LiDAR, cameras, IMU, GNSS, RTK, etc.). Furthermore, their strengths and weaknesses are shown, and the quantification of their features using spider charts will allow proper selection of different sensors depending on 11 features. In the second part, the main elements to be taken into account in the simulation of a perception system of an AV are presented. For this purpose, the paper describes simulators for model-based development, the main game engines that can be used for simulation, simulators from the robotics field, and lastly simulators used specifically for AV. Finally, the current state of regulations that are being applied in different countries around the world on issues concerning the implementation of autonomous vehicles is presented.This work was partially supported by DGT (ref. SPIP2017-02286) and GenoVision (ref. BFU2017-88300-C2-2-R) Spanish Government projects, and the “Research Programme for Groups of Scientific Excellence in the Region of Murcia" of the Seneca Foundation (Agency for Science and Technology in the Region of Murcia – 19895/GERM/15)

    PASS: Panoramic Annular Semantic Segmentation

    Get PDF
    Pixel-wise semantic segmentation is capable of unifying most of driving scene perception tasks, and has enabled striking progress in the context of navigation assistance, where an entire surrounding sensing is vital. However, current mainstream semantic segmenters are predominantly benchmarked against datasets featuring narrow Field of View (FoV), and a large part of vision-based intelligent vehicles use only a forward-facing camera. In this paper, we propose a Panoramic Annular Semantic Segmentation (PASS) framework to perceive the whole surrounding based on a compact panoramic annular lens system and an online panorama unfolding process. To facilitate the training of PASS models, we leverage conventional FoV imaging datasets, bypassing the efforts entailed to create fully dense panoramic annotations. To consistently exploit the rich contextual cues in the unfolded panorama, we adapt our real-time ERF-PSPNet to predict semantically meaningful feature maps in different segments, and fuse them to fulfill panoramic scene parsing. The innovation lies in the network adaptation to enable smooth and seamless segmentation, combined with an extended set of heterogeneous data augmentations to attain robustness in panoramic imagery. A comprehensive variety of experiments demonstrates the effectiveness for real-world surrounding perception in a single PASS, while the adaptation proposal is exceptionally positive for state-of-the-art efficient networks.Ministerio de Economía y CompetitividadComunidad de Madri
    corecore