8 research outputs found

    Wrist vascular biometric recognition using a portable contactless system

    Get PDF
    Human wrist vein biometric recognition is one of the least used vascular biometric modalities. Nevertheless, it has similar usability and is as safe as the two most common vascular variants in the commercial and research worlds: hand palm vein and finger vein modalities. Besides, the wrist vein variant, with wider veins, provides a clearer and better visualization and definition of the unique vein patterns. In this paper, a novel vein wrist non-contact system has been designed, implemented, and tested. For this purpose, a new contactless database has been collected with the software algorithm TGS-CVBR®. The database, called UC3M-CV1, consists of 1200 near-infrared contactless images of 100 different users, collected in two separate sessions, from the wrists of 50 subjects (25 females and 25 males). Environmental light conditions for the different subjects and sessions have been not controlled: different daytimes and different places (outdoor/indoor). The software algorithm created for the recognition task is PIS-CVBR®. The results obtained by combining these three elements, TGS-CVBR®, PIS-CVBR®, and UC3M-CV1 dataset, are compared using two other different wrist contact databases, PUT and UC3M (best value of Equal Error Rate (EER) = 0.08%), taken into account and measured the computing time, demonstrating the viability of obtaining a contactless real-time-processing wrist system.Publicad

    Seamless Multimodal Biometrics for Continuous Personalised Wellbeing Monitoring

    Full text link
    Artificially intelligent perception is increasingly present in the lives of every one of us. Vehicles are no exception, (...) In the near future, pattern recognition will have an even stronger role in vehicles, as self-driving cars will require automated ways to understand what is happening around (and within) them and act accordingly. (...) This doctoral work focused on advancing in-vehicle sensing through the research of novel computer vision and pattern recognition methodologies for both biometrics and wellbeing monitoring. The main focus has been on electrocardiogram (ECG) biometrics, a trait well-known for its potential for seamless driver monitoring. Major efforts were devoted to achieving improved performance in identification and identity verification in off-the-person scenarios, well-known for increased noise and variability. Here, end-to-end deep learning ECG biometric solutions were proposed and important topics were addressed such as cross-database and long-term performance, waveform relevance through explainability, and interlead conversion. Face biometrics, a natural complement to the ECG in seamless unconstrained scenarios, was also studied in this work. The open challenges of masked face recognition and interpretability in biometrics were tackled in an effort to evolve towards algorithms that are more transparent, trustworthy, and robust to significant occlusions. Within the topic of wellbeing monitoring, improved solutions to multimodal emotion recognition in groups of people and activity/violence recognition in in-vehicle scenarios were proposed. At last, we also proposed a novel way to learn template security within end-to-end models, dismissing additional separate encryption processes, and a self-supervised learning approach tailored to sequential data, in order to ensure data security and optimal performance. (...)Comment: Doctoral thesis presented and approved on the 21st of December 2022 to the University of Port

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Handbook of Vascular Biometrics

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    AUTHOR VERIFICATION OF ELECTRONIC MESSAGING SYSTEMS

    Get PDF
    Messaging systems have become a hugely popular new paradigm for sending and delivering text messages; however, online messaging platforms have also become an ideal place for criminals due to their anonymity, ease of use and low cost. Therefore, the ability to verify the identity of individuals involved in criminal activity is becoming increasingly important. The majority of research in this area has focused on traditional authorship problems that deal with single-domain datasets and large bodies of text. Few research studies have sought to explore multi-platform author verification as a possible solution to problems around forensics and security. Therefore, this research has investigated the ability to identify individuals on messaging systems, and has applied this to the modern messaging platforms of Email, Twitter, Facebook and Text messages, using different single-domain datasets for population-based and user-based verification approaches. Through a novel technique of cross-domain research using real scenarios, the domain incompatibilities of profiles from different distributions has been assessed, based on real-life corpora using data from 50 authors who use each of the aforementioned domains. The results show that the use of linguistics is likely be similar between platforms, on average, for a population-based approach. The best corpus experimental result achieved a low EER of 7.97% for Text messages, showing the usefulness of single-domain platforms where the use of linguistics is likely be similar, such as Text messages and Emails. For the user-based approach, there is very little evidence of a strong correlation of stylometry between platforms. It has been shown that linguistic features on some individual platforms have features in common with other platforms, and lexical features play a crucial role in the similarities between users’ modern platforms. Therefore, this research shows that the ability to identify individuals on messaging platforms may provide a viable solution to problems around forensics and security, and help against a range of criminal activities, such as sending spam texts, grooming children, and encouraging violence and terrorism.Royal Embassy of Saudi Arabia, Londo
    corecore