88 research outputs found

    How Fast Can We Play Tetris Greedily With Rectangular Pieces?

    Get PDF
    Consider a variant of Tetris played on a board of width ww and infinite height, where the pieces are axis-aligned rectangles of arbitrary integer dimensions, the pieces can only be moved before letting them drop, and a row does not disappear once it is full. Suppose we want to follow a greedy strategy: let each rectangle fall where it will end up the lowest given the current state of the board. To do so, we want a data structure which can always suggest a greedy move. In other words, we want a data structure which maintains a set of O(n)O(n) rectangles, supports queries which return where to drop the rectangle, and updates which insert a rectangle dropped at a certain position and return the height of the highest point in the updated set of rectangles. We show via a reduction to the Multiphase problem [P\u{a}tra\c{s}cu, 2010] that on a board of width w=Θ(n)w=\Theta(n), if the OMv conjecture [Henzinger et al., 2015] is true, then both operations cannot be supported in time O(n1/2ϵ)O(n^{1/2-\epsilon}) simultaneously. The reduction also implies polynomial bounds from the 3-SUM conjecture and the APSP conjecture. On the other hand, we show that there is a data structure supporting both operations in O(n1/2log3/2n)O(n^{1/2}\log^{3/2}n) time on boards of width nO(1)n^{O(1)}, matching the lower bound up to a no(1)n^{o(1)} factor.Comment: Correction of typos and other minor correction

    Population-coding and Dynamic-neurons improved Spiking Actor Network for Reinforcement Learning

    Full text link
    With the Deep Neural Networks (DNNs) as a powerful function approximator, Deep Reinforcement Learning (DRL) has been excellently demonstrated on robotic control tasks. Compared to DNNs with vanilla artificial neurons, the biologically plausible Spiking Neural Network (SNN) contains a diverse population of spiking neurons, making it naturally powerful on state representation with spatial and temporal information. Based on a hybrid learning framework, where a spike actor-network infers actions from states and a deep critic network evaluates the actor, we propose a Population-coding and Dynamic-neurons improved Spiking Actor Network (PDSAN) for efficient state representation from two different scales: input coding and neuronal coding. For input coding, we apply population coding with dynamically receptive fields to directly encode each input state component. For neuronal coding, we propose different types of dynamic-neurons (containing 1st-order and 2nd-order neuronal dynamics) to describe much more complex neuronal dynamics. Finally, the PDSAN is trained in conjunction with deep critic networks using the Twin Delayed Deep Deterministic policy gradient algorithm (TD3-PDSAN). Extensive experimental results show that our TD3-PDSAN model achieves better performance than state-of-the-art models on four OpenAI gym benchmark tasks. It is an important attempt to improve RL with SNN towards the effective computation satisfying biological plausibility.Comment: 27 pages, 11 figures, accepted by Journal of Neural Network

    On learning history based policies for controlling Markov decision processes

    Full text link
    Reinforcementlearning(RL)folkloresuggeststhathistory-basedfunctionapproximationmethods,suchas recurrent neural nets or history-based state abstraction, perform better than their memory-less counterparts, due to the fact that function approximation in Markov decision processes (MDP) can be viewed as inducing a Partially observable MDP. However, there has been little formal analysis of such history-based algorithms, as most existing frameworks focus exclusively on memory-less features. In this paper, we introduce a theoretical framework for studying the behaviour of RL algorithms that learn to control an MDP using history-based feature abstraction mappings. Furthermore, we use this framework to design a practical RL algorithm and we numerically evaluate its effectiveness on a set of continuous control tasks

    Semantic HELM: A Human-Readable Memory for Reinforcement Learning

    Full text link
    Reinforcement learning agents deployed in the real world often have to cope with partially observable environments. Therefore, most agents employ memory mechanisms to approximate the state of the environment. Recently, there have been impressive success stories in mastering partially observable environments, mostly in the realm of computer games like Dota 2, StarCraft II, or MineCraft. However, existing methods lack interpretability in the sense that it is not comprehensible for humans what the agent stores in its memory. In this regard, we propose a novel memory mechanism that represents past events in human language. Our method uses CLIP to associate visual inputs with language tokens. Then we feed these tokens to a pretrained language model that serves the agent as memory and provides it with a coherent and human-readable representation of the past. We train our memory mechanism on a set of partially observable environments and find that it excels on tasks that require a memory component, while mostly attaining performance on-par with strong baselines on tasks that do not. On a challenging continuous recognition task, where memorizing the past is crucial, our memory mechanism converges two orders of magnitude faster than prior methods. Since our memory mechanism is human-readable, we can peek at an agent's memory and check whether crucial pieces of information have been stored. This significantly enhances troubleshooting and paves the way toward more interpretable agents.Comment: To appear at NeurIPS 2023, 10 pages (+ references and appendix), Code: https://github.com/ml-jku/hel

    Educational Technology and Education Conferences, January to June 2016

    Get PDF

    Collaborative Information Dissemination with Graph-based Multi-Agent Reinforcement Learning

    Full text link
    Efficient information dissemination is crucial for supporting critical operations across domains like disaster response, autonomous vehicles, and sensor networks. This paper introduces a Multi-Agent Reinforcement Learning (MARL) approach as a significant step forward in achieving more decentralized, efficient, and collaborative information dissemination. We propose a Partially Observable Stochastic Game (POSG) formulation for information dissemination empowering each agent to decide on message forwarding independently, based on the observation of their one-hop neighborhood. This constitutes a significant paradigm shift from heuristics currently employed in real-world broadcast protocols. Our novel approach harnesses Graph Convolutional Reinforcement Learning and Graph Attention Networks (GATs) with dynamic attention to capture essential network features. We propose two approaches, L-DyAN and HL-DyAN, which differ in terms of the information exchanged among agents. Our experimental results show that our trained policies outperform existing methods, including the state-of-the-art heuristic, in terms of network coverage as well as communication overhead on dynamic networks of varying density and behavior.Comment: 13 pages, 5 figures, 4 table
    corecore