3 research outputs found

    Auditory Streaming: Behavior, Physiology, and Modeling

    Get PDF
    Auditory streaming is a fundamental aspect of auditory perception. It refers to the ability to parse mixed acoustic events into meaningful streams where each stream is assumed to originate from a separate source. Despite wide interest and increasing scientific investigations over the last decade, the neural mechanisms underlying streaming still remain largely unknown. A simple example of this mystery concerns the streaming of simple tone sequences, and the general assumption that separation along the tonotopic axis is sufficient for stream segregation. However, this dissertation research casts doubt on the validity of this assumption. First, behavioral measures of auditory streaming in ferrets prove that they can be used as an animal model to study auditory streaming. Second, responses from neurons in the primary auditory cortex (A1) of ferrets show that spectral components that are well-separated in frequency produce comparably segregated responses along the tonotopic axis, no matter whether presented synchronously or consecutively, despite the substantial differences in their streaming percepts when measured psychoacoustically in humans. These results argue against the notion that tonotopic separation per se is a sufficient neural correlate of stream segregation. Thirdly, comparing responses during behavior to those during the passive condition, the temporal correlations of spiking activity between neurons belonging to the same stream display an increased correlation, while responses among neurons belonging to different streams become less correlated. Rapid task-related plasticity of neural receptive fields shows a pattern that is consistent with the changes in correlation. Taken together these results indicate that temporal coherence is a plausible neural correlate of auditory streaming. Finally, inspired by the above biological findings, we propose a computational model of auditory scene analysis, which uses temporal coherence as the primary criterion for predicting stream formation. The promising results of this dissertation research significantly advance our understanding of auditory streaming and perception

    Exploiting pitch dynamics for speech spectral estimation using a two-dimensional processing framework

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 133-135).This thesis addresses the problem of obtaining an accurate spectral representation of speech formant structure when the voicing source exhibits a high fundamental frequency. Our work is inspired by auditory perception and physiological modeling studies implicating the use of temporal changes in speech by humans. Specifically, we develop and evaluate signal processing schemes that exploit temporal change of pitch as a basis for high-pitch formant estimation. As part of our development, we assess the source-filter separation capabilities of several two-dimensional processing schemes that utilize both standard spectrographic and auditory-based time-frequency representations. Our methods show quantitative improvements under certain conditions over representations derived from traditional and homomorphic linear prediction. We conclude by highlighting potential benefits of our framework in the particular application of speaker recognition with preliminary results indicating a performance gender-gap closure on subsets of the TIMIT corpus.by Tianyu Tom Wang.S.M

    Toward an interpretive framework of two-dimensional speech-signal processing

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 177-179).Traditional representations of speech are derived from short-time segments of the signal and result in time-frequency distributions of energy such as the short-time Fourier transform and spectrogram. Speech-signal models of such representations have had utility in a variety of applications such as speech analysis, recognition, and synthesis. Nonetheless, they do not capture spectral, temporal, and joint spectrotemporal energy fluctuations (or "modulations") present in local time-frequency regions of the time-frequency distribution. Inspired by principles from image processing and evidence from auditory neurophysiological models, a variety of twodimensional (2-D) processing techniques have been explored in the literature as alternative representations of speech; however, speech-based models are lacking in this framework. This thesis develops speech-signal models for a particular 2-D processing approach in which 2-D Fourier transforms are computed on local time-frequency regions of the canonical narrowband or wideband spectrogram; we refer to the resulting transformed space as the Grating Compression Transform (GCT). We argue for a 2-D sinusoidal-series amplitude modulation model of speech content in the spectrogram domain that relates to speech production characteristics such as pitch/noise of the source, pitch dynamics, formant structure and dynamics, and offset/onset content. Narrowband- and wideband-based models are shown to exhibit important distinctions in interpretation and oftentimes "dual" behavior. In the transformed GCT space, the modeling results in a novel taxonomy of signal behavior based on the distribution of formant and onset/offset content in the transformed space via source characteristics. Our formulation provides a speech-specific interpretation of the concept of "modulation" in 2-D processing in contrast to existing approaches that have done so either phenomenologically through qualitative analyses and/or implicitly through data-driven machine learning approaches. One implication of the proposed taxonomy is its potential for interpreting transformations of other time-frequency distributions such as the auditory spectrogram which is generally viewed as being "narrowband"/"wideband" in its low/high-frequency regions. The proposed signal model is evaluated in several ways. First, we perform analysis of synthetic speech signals to characterize its properties and limitations. Next, we develop an algorithm for analysis/synthesis of spectrograms using the model and demonstrate its ability to accurately represent real speech content. As an example application, we further apply the models in cochannel speaker separation, exploiting the GCT's ability to distribute speaker-specific content and often recover overlapping information through demodulation and interpolation in the 2-D GCT space. Specifically, in multi-pitch estimation, we demonstrate the GCT's ability to accurately estimate separate and crossing pitch tracks under certain conditions. Finally, we demonstrate the model's ability to separate mixtures of speech signals using both prior and estimated pitch information. Generalization to other speech-signal processing applications is proposed.by Tianyu Tom Wang.Ph.D
    corecore