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Abstract

Traditional representations of speech are derived from short-time segments of the signal and
result in time-frequency distributions of energy such as the short-time Fourier transform and
spectrogram. Speech-signal models of such representations have had utility in a variety of
applications such as speech analysis, recognition, and synthesis. Nonetheless, they do not capture
spectral, temporal, and joint spectrotemporal energy fluctuations (or "modulations") present in
local time-frequency regions of the time-frequency distribution. Inspired by principles from
image processing and evidence from auditory neurophysiological models, a variety of two-
dimensional (2-D) processing techniques have been explored in the literature as alternative
representations of speech; however, speech-based models are lacking in this framework.

This thesis develops speech-signal models for a particular 2-D processing approach in which 2-D
Fourier transforms are computed on local time-frequency regions of the canonical narrowband or
wideband spectrogram; we refer to the resulting transformed space as the Grating Compression
Transform (GCT). We argue for a 2-D sinusoidal-series amplitude modulation model of speech
content in the spectrogram domain that relates to speech production characteristics such as
pitch/noise of the source, pitch dynamics, formant structure and dynamics, and offset/onset
content. Narrowband- and wideband-based models are shown to exhibit important distinctions in
interpretation and oftentimes "dual" behavior. In the transformed GCT space, the modeling
results in a novel taxonomy of signal behavior based on the distribution of formant and
onset/offset content in the transformed space via source characteristics. Our formulation provides
a speech-specific interpretation of the concept of "modulation" in 2-D processing in contrast to
existing approaches that have done so either phenomenologically through qualitative analyses
and/or implicitly through data-driven machine learning approaches. One implication of the
proposed taxonomy is its potential for interpreting transformations of other time-frequency
distributions such as the auditory spectrogram which is generally viewed as being
"narrowband"/"wideband" in its low/high-frequency regions.

The proposed signal model is evaluated in several ways. First, we perform analysis of synthetic
speech signals to characterize its properties and limitations. Next, we develop an algorithm for
analysis/synthesis of spectrograms using the model and demonstrate its ability to accurately



represent real speech content. As an example application, we further apply the models in co-
channel speaker separation, exploiting the GCT's ability to distribute speaker-specific content and
often recover overlapping information through demodulation and interpolation in the 2-D GCT
space. Specifically, in multi-pitch estimation, we demonstrate the GCT's ability to accurately
estimate separate and crossing pitch tracks under certain conditions. Finally, we demonstrate the
model's ability to separate mixtures of speech signals using both prior and estimated pitch
information. Generalization to other speech-signal processing applications is proposed.

Thesis Supervisor: Thomas F. Quatieri
Title: Senior Member of Technical Staff; MIT Lincoln Laboratory
Faculty of Speech and Hearing Bioscience and Technology Program; Harvard-MIT Division of
Health Sciences and Technology
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Chapter 1

Introduction
A fundamental goal of speech-signal processing is to obtain models of empirical representations
of the signal such as a speech waveform or its spectrogram). The model's ability to accurately
represent speech content generally motivates application to a variety of speech processing tasks.
Examples in analysis and/or synthesis include pitch and formant estimation and voice
modification. Additional applications include feature extraction for speech/speaker recognition
and speech enhancement. In this thesis, we formulate and evaluate models of speech content in a
two-dimensional (2-D) representation of the signal.

1.1 Problem Statement
Traditional representations of speech are typically obtained by extracting and analyzing short-
time segments of the speech waveform. As a canonical example, the short-time Fourier transform
(STFT) performs Fourier analysis of segments of the signal to characterize the frequency/spectral
components of each segment across time. This approach results in the spectrogram, or more
generally for non-Fourier methods (e.g., wavelet transform [1]), a time-frequency distribution of
the signal. Classical models of speech that have been developed using the STFT include the
cepstral [2], all-pole [3], and sinusoidal-based representations [4].

Despite its utility in existing speech processing tasks, a critical limitation of the short-time
analysis framework is its inability to analyze spectral, temporal, and spectrotemporal
"modulations" in the time-frequency distribution itself. Here, we refer to "modulation" in a loose
sense and characterize it qualitatively as energy fluctuations in a time-frequency distribution.
Observe for instance in Figure 1-1 temporally, spectrally, and spectrotemporally-oriented
fluctuations in energy for a narrowband spectrogram corresponding to vowels, onsets/offsets, and
noisy content. To explicitly analyze such components, recent findings from auditory
neurophysiology coupled with image processing principles, have motivated a two-dimensional (2-
D) processing framework in which 2-D analysis is performed on the time-frequency distribution
itself (Figure 1-2). Examples of this generalized 2-D processing framework include the
modulation spectrogram proposed in [5], the physiologically-motivated model of spectrotemporal
receptive fields in the mammalian cortex of [6], and early work in 2-D Fourier analysis of the
spectrogram e.g., in [7].

While existing work in 2-D processing methods for speech has motivated several representations
of the underlying speech signal, an outstanding difficulty lies in their interpretation, particularly
with respect to the concept of "modulations". As will be subsequently discussed, "modulations"
are often characterized qualitatively, through implicit methods (e.g., data-driven/machine learning
techniques), or through an analytical construct without relation to easily interpretable
characteristics of speech (e.g., pitch and formant structure in speech production). The aim of this
thesis is to explicitly relate a class of 2-D representations to a concept of modulation that is also
based on underlying properties of speech production characteristics.
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Figure 1-1. Narrow- (top) and wide- (bottom) band spectrograms' of a female speaker
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Figure 1-2. Generalized 2-D framework in which 2-D analysis is performed on local regions
of a time-frequency distribution to result in a transformed 2-D space.

1.2 Framework
In this thesis, we consider a particular realization of the general 2-D framework referred to as the
Grating Compression Transform (GCT). The GCT is defined as the 2-D Fourier transform of a
local time-frequency region of the spectrogram. We consider two canonical spectrogram types:
narrowband and wideband, and derive models for speech content in the resulting GCT space.

1 Unless otherwise denoted, spectrograms in this thesis are plotted by taking the fourth root of the
magnitude short-time Fourier transform for display purposes to avoid image scaling issues in e.g., silent
regions.



Our choice of narrow and wideband spectrograms stems from the fact that these are the
traditional time-frequency representations used in analyzing speech and reflect distinct time and
frequency resolutions. In addition, they serve the basis for other time-frequency distributions that
are often viewed as "mixtures" of the narrowband and wideband representations as will
subsequently be discussed. We propose a 2-D sinusoidal-series modulation model in which the
carrier and envelope terms are shown to reflect distinct characteristics of the speech waveform
(e.g., pitch/formant content, fricatives/noise, onset/offsets). In the corresponding transformed
GCT space, the models invoke a distribution of copies of the envelope content based on the
specific parameters of the carrier. Furthermore, both temporally stationary and dynamic content
in the form of pitch and formant dynamics are modeled explicitly in this representation.

The proposed signal models are evaluated in several ways. Firstly, we perform simulations on
synthetic signals to highlight limitations and properties of the models. Based on these
observations, we next develop and test an analysis/synthesis framework for reconstructing
spectrograms of individual speakers. As our models will be shown to reflect distinct properties of
speech production of individual speakers (e.g., pitch/formant structure and their dynamics), we
further develop and test algorithms for application to co-channel speaker separation. Specifically,
we use the GCT framework both in multi-pitch analysis/estimation as well as signal separation.
In this context, we view our efforts not only as assessing the utility and applicability of the GCT
for this task but also as further evaluation of the models' ability to represent speech content from
individual speakers.

1.3 Summary of Contributions
The primary contribution of this thesis is the formulation of models of speech content in local
time-frequency regions of both of the narrowband and wideband spectrograms as well as their
Grating Compression Transform representations. The model is based on sinusoidal modulation in
the time-frequency space; specifically, a speech source-based carrier reflecting pitch, pitch
dynamics, and noisy source signals is represented by a 2-D sinusoidal series resting on a DC
pedestal. This carrier is modulated by a slowly-varying envelope term reflecting formant
structure and formant dynamics as well as onset/offset content. In the GCT space, this model
invokes a distribution of copies of the envelope component at locations reflecting the specific
carrier parameters. The models allow for recovery and interpolation of envelope terms that may,
under certain conditions (e.g., co-channel speech mixtures) exhibit overlap with interfering
signals. Furthermore, the models allow for explicit representation and exploitation of dynamic
content for both pitch and formant dynamics.

The combined wideband and narrowband signal models invoke a taxonomy of speech-signal
behavior in the GCT space that can be distinctly interpreted and often exhibit "dual" behavior
based on speech production parameters (i.e., a noisy or voiced source signal, formant structure
and formant dynamics, onset/offset structure). As will subsequently be discussed, we propose
this taxonomy as an interpretive framework for not only the GCT but of other time-frequency
distributions as well as other 2-D processing approaches. As a simple example, the auditory
spectrogram is often viewed as "narrowband"/"wideband" in low/high-frequency regions, and the
derived models may have implications for interpreting this alternative representation as well. To
demonstrate the utility of the GCT for speech-signal processing applications, we develop
algorithms to perform analysis/synthesis (i.e., reconstruction) of wideband and narrowband
spectrograms. These algorithms are shown to provide accurate reconstructions of spectrograms
on with average root-mean-squared errors (RMSE) of 5e-3 - 4e-2 when computed relative to a
maximal value of unity (see Chapter 3). Furthermore, when combined with the original phase of
the speech signals, the reconstructed waveforms exhibit very good speech quality with signal-to-
noise ratios of 11-20 dB (see Chapter 3).



Building on our analyses and analysis/synthesis algorithms, and as an example application, we
further apply the GCT to the problem of co-channel speaker separation. In particular, we develop
algorithms for both signal separation (using both prior and estimated pitch information) and
multi-pitch estimation. In multi-pitch estimation, we demonstrate the GCT's ability to estimate
pitch tracks that are both crossing and separate under all-voiced conditions. In signal separation,
we demonstrate that the narrow and wideband GCT representations result in good separation of
the underlying speech signals with signal-to-noise ratios of 4-7 dB (relative to a 0 dB initial
SNR). Motivated from the "dual" nature of the GCT representations of wideband and
narrowband spectrograms, we further performfusion of the estimates demonstrating gains of -1
dB over either representation alone. These results provide evidence for complementary
information captured by both narrowband and wideband representations. For comparison
purposes, we develop extensions to a traditional frame-based sinusoidal separation system to
handle silent and unvoiced regions of speech mixtures providing a baseline that is shown to
exhibit performance of 6-9 dB. Though the GCT-based representation does not outperform the
baseline system, fusion of waveforms results in a ~1 dB gain above the reference providing
evidence for complementary information using the GCT for the separation task. Finally, we show
that the GCT is a promising framework for this task by combining elements of the multi-pitch
estimation and signal separation methods in a prototype full separation system for separation of
mixtures of male and female speakers; this system is demonstrated to result in SNR gains of -4
dB on mixtures of male and female speakers with voiced and unvoiced speech.

1.4 Thesis Outline
This thesis is organized as follows. In Chapter 2, we provide background to both the general 2-D
processing framework as well as the example application of co-channel speaker separation. In
Chapter 3, we derive speech-signal models for narrowband spectrograms and evaluate these
models using simulations, analysis/synthesis (i.e., reconstruction) of spectrograms, as well as
speaker separation using prior information. In Chapter 4, we perform the analogous steps as in
but for wideband spectrograms; furthermore, in Chapter 4, we relate the wideband and
narrowband representations through a taxonomy of speech signal behavior for the GCT. In
Chapter 5, motivated by the narrowband model's ability to represent pitch information of
individual and multiple speakers, we perform multi-pitch analysis and estimation in as a further
test of the model. In Chapter 6, we develop a prototype system for speaker separation by
combining signal separation and multi-pitch analysis/estimation methods. We conclude in
Chapter 7 with a discussion of future directions.



Chapter 2

Background
In this chapter, we discuss background related to 2-D signal representations for speech; in
addition, we outline the basic framework for the Grating Compression Transform. As additional
background, we also discuss the co-channel speaker separation problem and describe several
existing approaches.

2.1 Two-dimensional Modulation Representations
As described in Chapter 1, a generalized 2-D processing framework for speech is based on
performing 2-D analysis of a time-frequency distribution, thereby explicitly analyzing energy
fluctuations/"modulations" along spectral, temporal, and spectrotemporal dimensions (Figure
1-1). In this section, we review several realizations of this general 2-D framework.

2.1.1 Modulation Spectrogram
The modulation spectrogram is derived from a 2-D processing approach that analyzes temporal
modulations of the spectrogram across time and frequency [5]. Specifically, from Figure 2-1, a
modulation spectrum at a specific frequency and time in the spectrogram is obtained by
computing the Fourier transform of a time slice from a (typically) narrowband spectrogram. The
"modulation frequency" is defined as the transformed time variable via the Fourier transform (for
a particular frequency band). This analysis is performed for each frequency band, and the
resulting spectra can be combined to generate a 2-D function of frequency and modulation
frequency for a particular point in time [8]. An alternative view can also be obtained as a
function of time and frequency for a fixed modulation frequency fm (e.g., as in [5]). Variations
on the modulation spectrogram (e.g., multi-scale modulation spectrograms [9]) have also been
proposed in the literature.

This framework has been applied in a variety of applications such as channel compensation [10],
speech analysis [8], and co-channel speaker separation [11]. Furthermore, a model for acoustic
signals has been proposed by Atlas and colleagues using properties of the Hilbert envelope [8].
Nonetheless, modulation components (i.e., an envelope component multiplying/modulating a
carrier [8]) are defined in this framework with no explicit reference to speech components,
thereby corresponding to a general analytical construct. Furthermore, the modulation
spectrogram focuses exclusively on temporal modulation components for a fixed frequency band,
thereby neglecting modulations that may occur across frequency.
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Figure 2-1. Modulation spectrogram framework; the short-time Fourier transform is
computed using a fixed time-frequency tiling. Time slices for each frequency band are used
in Fourier analysis to generate the modulation spectrogram.

2.1.2 Spectral Expansion
As a "dual" to the modulation spectrogram, spectral expansion was proposed in [12] as a way to
characterize fluctuations along the frequency axis at multiple scales Figure 2-2. In particular, an
auditory spectrogram is computed as the time-frequency distribution. Subsequently, spectral
slices of the auditory spectrogram are analyzed using a multi-scale filterbank across different
scales and corresponding modulation frequencies.

Spectral expansion has been argued analytically to exhibit robustness properties in the presence
of additive noise [12]. Efforts to interpret this representation have nonetheless been limited to
qualitative and phenomenological analyses in demonstrating that distinct modulations correspond
to distinct spectral shapings of vowels. In addition, the representation does not explicitly capture
temporal modulation patterns present in the auditory spectrogram. In [13], it was shown that
spectral expansion can be used to derive a feature set that is a "superset" of the traditional mel-
cepstral coefficients, thereby resulting in improved phoneme recognition in the presence of noise.
Nonetheless, in this work, modeling was done implicitly through a traditional hidden Markov
model framework in which distinct modulation patterns of phonemes were learned through
training data without reference to distinct speech parameters.
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Figure 2-2. Spectral expansion framework; an auditory spectrogram computed; spectral
slices are passed through a multi-scale filterbank along the frequency axis to generate a
scale-time representation.

2.1.3 Spectrotemporal Auditory Model
Building on the work of [12], the auditory model of Chi, et al. [6] analyzes modulation
components along both time and frequency. Specifically, an auditory spectrogram is computed
on the waveform followed by 2-D filtering using a bank of 2-D filters with varying durations in
time and frequency (Figure 2-3). This results in a multi-resolution representation along time,
frequency, and temporal (u) and frequency (R) modulation axes. Earlier versions of the model
(e.g., in [13]) also focused exclusively on spectral modulation characteristics, performing
analysis across the frequency axis of the auditory spectrogram, analogous to the modulation
spectrogram's analysis of temporal modulation. A key component of the auditory model is its use
of wavelet-like analysis both at the short-time frame and subsequent 2-D levels. In particular, the
auditory spectrogram represents a non-uniform "tiling" of the time frequency space, while the
subsequent 2-D filterbank contains filters with non-uniform bandwidths in the auditory space.
The resulting transformed space consists of the v and fl axes that reflect "modulation" content
oriented along time and frequency, respectively. Finally, we note also that the model contains
several nonlinear components such as inner hair cell rectification in short-time analysis, and
lateral inhibition across frequency bands of the auditory spectrogram, both incorporated to mimic
presumed biological mechanisms in auditory processing.
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Figure 2-3. The auditory spectrogram is analyzed with a bank of 2-D filters that span
distinct resolutions in the time-frequency space, resulting in a 2-D filtered/transformed
space with distinct resolutions.

The described auditory model has been used for voice activity detection [14], phoneme
recognition [13], and perceptual modeling [15]. These efforts have exclusively utilized data-
driven learning methods to automatically characterize the model outputs, presumably due to the
difficulty of directly interpreting the resulting space. For instance, in [16], we observed that
harmonic line structure was observed to be non-uniformly spaced in the auditory spectrogram for
periodic source signals such that any subsequent 2-D filterbank representation does not provide a
coherent mapping of these components. The auditory model therefore does not motivate an
model of speech signals in relation to underlying production characteristics.

2.1.4 Grating Compression Transform
From our previous discussions, we have seen that while existing methods of 2-D processing of
speech has resulted in a novel paradigm for analysis, outstanding limitations include their
inability to analyze the "complete" set of modulations present in the spectrogram such as
temporal (across time), spectral (across frequency) and joint spectrotemporal (time and
frequency). Furthermore, interpretation of these frameworks in relation to speech production
characteristics such as specific parameters (e.g., pitch, pitch dynamics, formant structure) is
lacking. We summarize in Table 2-1 properties of these frameworks; in addition, we list
properties of an alternative framework to be explored in this thesis referred to as the Grating
Compression Transform (GCT). From Table 2-1, observe for instance that spectral expansion
and the modulation spectrogram are "duals" of each other in not analyzing spectral and temporal
modulations, respectively. Furthermore, interpretations of these frameworks that relate to speech
stem from either qualitative/phenomenological observations or are probabilistic in nature.
Specifically, in the probabilistic setup, a statistical model is developed using training data on
representations of distinct speech sounds for the purposes of speech and/or phone recognition
(e.g., see [13], [17]). Finally, we have noted that signal models of the modulation spectrogram
have been proposed analytically though without specific reference to speech-based parameters;
this framework has been applied for instance in analysis of musical signals [18].

Herein we describe the 2-D processing approach taken in this thesis referred to as the Grating
Compression Transform (GCT). The GCT is defined as the 2-D Fourier transform of a localized
time-frequency region of the short-time Fourier transform magnitude (or log-magnitude, see
Chapter 4) as schematized in Figure 2-4. In relation to the auditory model of the previous
section, the GCT is based on a uniform "tiling" of the time frequency space dependent on the
length of the short-time analysis window used in computing the spectrogram. Furthermore, the
subsequent 2-D Fourier analysis of local regions of the spectrogram are computed based on time-



frequency regions of fixed size. Viewing the 2-D Fourier transform from the filterbank view,
note that this is equivalent to filtering with a 2-D filterbank with uniformly sized filters in the
GCT domain. The resulting transformed space has axes of u and .0 corresponding to
"modulation" frequencies in time and frequency, respectively.

Table 2-1. Summary of 2-D processing approaches aimed at analyzing energy
fluctuations/"modulations" in time-frequency distributions.

Spectral Expansion Modulation Auditory Cortex Grating Compression
Spectrogram Model Transform

Spectral Yes No Yes Yes
Temporal No Yes Yes Yes
Spectrotemporal No No Yes Yes
Interpretation Speech-specific but Analytical non- Speech-specific but Speech-specific but

probabilistic and/or speech-specific probabilistic and/or probabilistic and/or
qualitative qualitative qualitative

"Grating
-+- Compression

Transform"

C CCr Cr a@00
Time Time U

Figure 2-4. Localized time-frequency regions of a spectrogram analyzed using the 2-D
Fourier transform resulting in the Grating Compression Transform (GCT) space.

Previous efforts using the GCT have demonstrated its ability to represent pitch information [7].
In our previously published work, we have also demonstrate the GCT's ability to represent and
formant structure [19] in distinct regions of the resulting transformed space, multi-pitch
information from distinct speakers [20], and its utility for co-channel speaker separation through
spectrogram demodulation on all-voiced speech mixtures [21]. In addition, the GCT has been
shown to be amenable to data-driven methods in phoneme recognition [22]. In this thesis, we
develop a novel model for the GCT that characterizes modulation components explicitly in
relation to speech production parameters the represents a culmination of our previous efforts and
as a way to potentially interpret the results reported by others using the GCT.

2.2 Co-channel Speaker Separation
As previously discussed, we further explore in this thesis an example application using the GCT
framework in co-channel speaker separation (CSS). Our emphasis is on assessing the signal
model's ability to represent speech as well as its potential to address distinct aspects of the
general CSS problem. As a problem definition for CSS, we consider obtaining from a single
channel (e.g., an acoustic microphone) a mixture waveform y[n] consisting of a set of speech
waveforms x; [n], with each i corresponding to a distinct speaker. y[n] is a weighted sum of the
individual waveforms



y[n] = Za' xIL n] (2x1)

where N is the total number of speakers present in the mixtures, and a are scale factors that
control the relative energies of each speaker in the mixture. The goal of CSS is to obtain an
estimate xi[t] of xt[t] from y[t] according to some goodness criterion. In our work, we
exclusively consider the case of N = 2, though our methods can be applied more generally for N
> 2.

A variety of techniques have been proposed in the literature for co-channel speaker separation
(CSS) under distinct formulations of the problem and constraints. Examples of these include
parametric modeling (e.g., in sinusoidal analysis/synthesis [23], modulation spectrum [11]),
independent components analysis (ICA) (e.g., [24]), computational auditory scene analysis
(CASA) (e.g., [25]), and generative modeling (e.g., factorial hidden Markov models, FHMM
[26]). ICA-based methods utilize multiple channels (e.g., multiple microphones) of observation
of the mixture for estimating targets. Generative modeling approaches assume extensive prior
knowledge for distinct target speakers; for instance, FHMM approaches separate speakers based
on developing a complete model of the target speaker (using training data of the target speaker) a
priori such that they are speaker dependent. We delineate our work in this thesis for application
to the single-channel and speaker-independent setting. CASA approaches in this context
generally involve estimating binary masks of individual time-frequency units of a canonical
spectrogram or auditory spectrogram. No underlying model of a distinct speaker based on speech
parameters is applied. Given that the GCT aims to explicitly model speech of individual
speakers, we view its approach in signal separation in the context of parametric modeling
methods. An example of this approach is that of the sinusoidal-based separation system proposed
in [23] in which parametric models for individual speakers are fit to the resulting mixture
waveforms; similar approaches have been proposed in [27] to handle unvoiced/voiced speech
mixtures and using complex exponential representations rather than sinusoids. Nonetheless, the
proposed set of signal models could also be used in other contexts of the CSS problem (e.g., a
GCT-based representation could be used in training FHMMs for speaker-dependent separation).

2.3 Conclusions
In this chapter, we have described existing two-dimensional (2-D) speech signal processing
approaches for analyzing energy fluctuations/"modulations" present in time-frequency
distributions. While the variety of existing methods have motivated an alternative framework for
processing speech, an outstanding limitation is the inability to directly interpret representations
explicitly in relation to basic speech parameters such as pitch or pitch dynamics. We have also
described a 2-D processing approach using 2-D Fourier analysis of local time-frequency regions
of the spectrogram, a representation referred to as the Grating Compression Transform (GCT). In
subsequent chapters, we aim to derive and develop models of speech in the GCT context with the
aim of interpreting the GCT space in relation to basic speech parameters. This chapter has also
described the problem statement of co-channel speaker separation (CSS); though we aim to
develop signal processing techniques for addressing the CSS problem using the GCT, our primary
aim is to further assess the GCT and its corresponding speech-signal models' ability to represent
speech.

(2.1)



Chapter 3

Narrowband Models
In this chapter2, we consider two-dimensional (2-D) Fourier analysis of local time-frequency
regions of the narrowband spectrogram. We refer to the resulting 2-D Fourier space as the
(narrowband) Grating Compression Transform (GCT)3. We introduce a novel sinusoidal series-
based modulation model for speech signals using the GCT. Our model utilizes source content
(e.g., noise or voicing) to distribute vocal tract (e.g., formant) and onset/offset content in the
transformed GCT space (Figure 3-1). Specifically, the model is capable of representing a variety
of speech content such as vowels, fricatives, and onset/offsets as low-frequency temporal and
spectral fluctuations of the narrowband spectrogram distributed to multiple locations within the
GCT space. In our analyses, we investigate properties of the model, as well as limitations using
simulations on synthetic signals. Motivated from our observations, we develop and evaluate
algorithms for analysis/synthesis of spectrograms that exploit the distribution of vocal tract and
onset/offset energy throughout the GCT space. Finally, as a potential application, we explore co-
channel speaker separation using pitch tracks of speakers obtained a priori. Here, the distribution
of replicas of vocal tract content throughout the GCT space is essential for separation in allowing
for recovery of corrupted components due to the present of an interfering speaker. For this
application, we emphasize our focus in assessing the utility of the signal model rather than
developing a complete separation system.

This chapter is organized as follows. Section 3.1 develops the 2-D speech-signal model for the
GCT. We formulate two approaches for analysis/synthesis of spectrograms in Section 3.2;
similarly, we present in Section 3.4 algorithms for co-channel speaker using a priori pitch
estimates of distinct speakers. In Section 3.5 we describe specific methods, evaluation criteria,
and present our results on both tasks. We conclude in Section 3.6 with a discussion of our results.

2 Substantial portions of this chapter are taken from [53].
3 We use "GCT" to denote the narrowband GCT representation in this chapter since our focus is on
narrowband spectrograms. We delineate a distinction in subsequent chapters between wideband and
narrowband GCTs (i.e., WGCT vs. NGCT).
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Figure 3-1. Schematic of proposed framework; the GCT space (right) where vocal tract
information (shaded, red, green) is distributed based on properties of the voicing (top) or
noise (bottom) source content ('X').

3.1 2-D Signal Modeling
3.1.1 Voiced Speech
1-D Source Model: We first develop a one-dimensional (1 -D) model of the short-time Fourier
transform (STFT) magnitude for periodic source signals. Consider a pure impulse train p [n] with
periodicity P

p[n] = E j|"...86[n - kP]. (3.1)

In analysis, p [n] is windowed with a short-time analysis Hamming window w[n], i.e.,

pwI[n] = w[n] Z'=. 6[n - kP]. (3.2)

The narrowband STFT of pw [n] is

Pw(O) = j'_ w(o - (3.3)

where w(c) is the Fourier transform of w[n]. For narrowband spectrograms, the length N of
w[n] is chosen to be at least 2-3 times the periodicity P such that the main lobes of the w(w -
2nk
-) terms approximately occupy distinct frequency regions of the spectrum and such that p()

exhibits harmonic structure [1] (Figure 3-2b). For analysis, we consider typical pitch values in
speech of 60 to 350 Hz such that w[n] can be constrained to be 32-50 ms [28]. Since p() is
periodic with period 2' (Figure 3-1c), it can be decomposed with a Fourier series, or equivalently,
a series of cosines [2], i.e.,

pw(w) ~ D + Ex=1ak cos (' W + pk) (3.4)

where D corresponds to a DC term. For reasons that will subsequently become clear, we refer to
pw (w) as a carrier term.
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Fiue3-2. (a) Short-time analysis of a pure impulse train (blue) with a short-time
Hamming window (red); (b) Short-time spectrum of (a); (c) single period of pw(x); (d)
Magnitude of Pw(fl) and samples at the fundamental frequency (stem, green). (c-d) plotted
on a log scale for display purposes.

Figure 3-2d shows the Fourier transform of pwQA)) which we denote as P, (f) and refer to as the
1-D GCT domain. By sampling P,(f ) at multiples of - (i.e., the exponential/sinusoidal Fourier

expansion of Pw (c) in (3.3)), observe that the periodicity of the source signal is related to the
position of the first Fourier coefficient with largest magnitude in the GCT domain. In Figure
3-2d, this coefficient is located at A1 = 0.25ir such that the pitch value fo can be obtained as

f0 = =250Hz (3.5)NSTFFTOO (512)(0.25nr)

where NSTFT, fs, and 02 are the length of the discrete-Fourier transform used to compute the
STFT, sampling frequency of the waveform, and position of the maximum peak in the GCT
domain, respectively. This characteristic of the GCT space is consistent with the duality of the
Fourier transform; specifically, P,(1) should approximately correspond to a Hamming window if

the mainlobe content of each w( - )t term in pwfo) does not interact with each other from
the narrowband constraint.

For GCT analysis, we extract localized regions of pw() for use in Fourier analysis with a
Hamming window w(sc) applied along the o-axis such that the resulting (1-D) GCT
representation P, (=71) is

[ken JkW Q ( 21-(.) +1
P,(f1) = W, D+ 0.5 D= 2n (3.6)

where W ,( f) is the Fourier transform of wu(s). Analogous to the argument made for short-time
analysis in which we sought to have minimal interaction between the woh) terms, wg ( f) should

(b) pj(o)(a) Short-time Analysis with w[n]



27rbe set to at least 2-3 times --. To account for the extremal case of 350 Hz (with closest spacing
of the impulses in the GCT domain), this constrains wg,() to be between (2)(350) = 700 to
(3)(350) = 1050 Hz.

1-D Vocal Tract Model: In the source-filter framework of voiced speech, the source signal is
convolved with the impulse response of the formant structure h[n] and glottal flow component
g [n]

s[n] = h[n] * p[n] * g[n]. (3.7)

In short-time analysis, s [n] is analyzed using the window w[n], i.e.,

s,[n] = s[n]w[n] = (h[n] * p[n] * g[n])w[n] (3.8)

s,[n] ~ (h[n] * g[n]) * p.[n] (3.9)

where pw [n] is defined as in (3.2); the latter step is obtained by assuming that w[n] varies slowly
relative to h[n] * g[n] as in [2]. The short-time spectrum magnitude s.(W) of the signal is

s,(w) = p.(w)a(&o) (3.10)

a(w) = h(w)g(to) (3.11)

where p(o), h(co), g(w) are the Fourier transform components of pw[n], h[n], and g[n],
respectively. Here, we have combined the glottal flow and formant terms into a single
component a(o). By substituting (3.3) into (3.10) and applying a window wg(o) along the a-
axis,

sGw) x wg (w )a () (D + E'=1 ak cos ± t + lk)] (3.12)

The above model corresponds to amplitude modulation of the sinusoidal-series carrier of (3.4) by
the envelope term a(o). The 1-D GCT representation is then

S,(fl) = DA w(f) + 0.5 [kel'kAw ( - ) 1 (3.13)
k ake-j*kAw (f + -1)r]

A,(1l) = A(fi) *n W,(f) (3.14)

where *n denotes convolution along the fl-axis. For reasons that will subsequently become clear,
we denote fA as the "bandwidth" of A(Il) such that

|A(fn)| z 0, |n|l > fiA (3.15)



Observe that if IA < -- IA, the DC and modulated terms in (3.13) then exhibit minimal
P

overlap with each other and occupy distinct regions along the fl-axis as shown in Figure 3-3.
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Figure 3-3. (a) Modulation model showing periodic carrier term pw(w) (blue, dotted) being
modulated by an envelope term a(o) (red, solid) to generate the (b) short-time spectrum
swQ(w)(maroon) and analyzed by a window w,((o) (green) along the w-axis; (c) local region
obtained from (b); (d) 1-D GCT magnitude of (c) indicating replicas of near-DC term at
multiples corresponding to the periodicity of the carrier at 2.

2-D Model: Herein we extend the 1 -D model of voiced speech to both time and frequency axes of
the narrowband spectrogram. In doing so, we incorporate time dependence on the formant
structure. Specifically, from the theory of time-varying systems, we denote a time-dependent unit
sample response a[n, m] as corresponding to formant and glottal flow characteristics. We use as
input a[n, m] a periodic impulse train p[n] as before such that the output is [1]

(3.16)

Analyzing this again within a short-time analysis window, we have

(3.17)

The Fourier transform of s[n] can be shown to correspond to [1]

s[n, a] = a(n, w) * -( -L k)
k= P

such that the Fourier transform of s, [n, (o] is

s,[n, w] = (a[n,w] E=_.[W - k]) *&, w[co]

=( ._ a [n,Lrk] 6[w - L k]) * w[w]

(3.18)

(3.19)

If w[n] is chosen to be a "long" window such that w(w) has a small bandwidth (e.g., in a
narrowband condition), we approximate this effect by

s.[n, ~] a[n, w] =.w w - k

a[n,w](D + Zi= 1akCOS (-Tco +iP. (3.20)

s[n] = E'=_. a[n, m]p[n - m]

s,[n] = w[n] Z=. a[n, m]p[n - m]



where I LO w o - k) is rewritten again a periodic sinusoidal expansion. Equation (3.20)
therefore motivates a 2-D modulation model of the spectrogram for time-varying formant
structure and stationary pitch, similar to that proposed in the 1-D case.

As a further extension of the model, consider a localized time-frequency region centered at nc
and oc of s[n, to] extracted with a 2-D window w[n, (], i.e.,

s,[n, o] = w[n, o]s[n + ne, o+oC] (3.21)

If the source signal p[n] is time-varying (i.e., with changing periodicity) we propose a model of
the harmonic structure as a 2-D sinusoidal series carrier, i.e.,

s, [n, o] ~ a [n, o] [K + Z ak COS(p [n, o])] (3.22)

#k[n, o] = kfl,(n cos 0 + o sin 0) + 'Pk (3.23)

where f1s is the spatial frequency of the 2-D sinusoid and 0 represents its orientation in the time-
frequency space (Figure 3-4a). The 2-D sinusoidal carrier is motivated from observations that
local time-frequency regions of harmonic content resemble approximately parallel lines with
periodicity related pitch information (i.e., as observed in pitch estimation results with the GCT
[7]). Specifically, the pitch value at the center of s, [n, o] in time can be obtained with the
mapping

fo 2lrf, 3.4
NSTFT1s cose (3.24)

This mapping maps the vertical distance between harmonic lines in the local time-frequency
region to the corresponding vertical distance of the sinusoidal terms in the GCT domain (Figure
3-4).
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Figure 3-4. (a) Schematic of localized region of spectrogram with harmonic lines (solid)
modulated by a local envelope (e.g., formant and/or onset/offset) structure (shaded); pitch
parameters denoted; (b) GCT of (a); (c) noise structure modulating (solid, squares)
envelope (shaded); (d) GCT of (c).

Furthermore, denoting AfO as a change in pitch across the duration of s [n, o] in time, observe
from Figure 3-4b that for the k pitch harmonic in s,[n, w], the absolute change in frequency is k
Afo such that

tan 0 ~
An1

(3.25)

Denoting fcenter as the center frequency of s, [n, w], the rate of change of pitch can then be
estimated as

afo fo tan

dt fcenter
(3.26)

Returning now to the model in (3.18), a,[n, a] corresponds to a windowed portion of a[n, w] as
a general envelope term. The 2-D carrier represents the harmonic line structure of narrowband
spectrogram while the envelope a, [n, w] represents the local spectrotemporal shaping of the
spectrogram (e.g., dynamic formant structure). In the GCT domain, dynamic content results in a
rotation of the envelope component above the origin relative to a stationary formant [19] (see
Appendix C). As in the 1 -D case, we propose a bandlimited (CIAz) approximation of a, [n, t] in
which

A(v, fl) = A,(u, f), -v
2 + fl 2 < f ~: 0, otherwise (3.27)

The GCT is the 2-D Fourier transform of (3.22)

Sw(v, 12) = KAw(v, C1) + 0.5 1'=1 Iae -fk,(v - kI cos 0,D + kos sin (
[+ake fflkAW(v + kil acs 0, D - kils sin 0)] (3.28)

(b) ''I(a)



where v and f2 correspond to n and &, respectively, and the carrier-modulated envelope terms
exhibit minimal interaction with each other (Figure 3-4).

Simulations: Herein we evaluate the 2-D signal model for voiced speech on a synthetic signal. In
a first set of simulations, we assess the extent to which dynamic formant and pitch content effects
the pitch mappings proposed in (3.24) and (3.26) in the GCT domain. As a source signal, we use
an impulse train with linearly rising pitch ranging from 150 Hz to 250 Hz across a 0.5-second
duration. This corresponds to a moderate pitch change rate of 0.2 Hz/ms that we typically
observe in speech. The impulse train is synthesized using the described parameters at an
oversampled 64 kHz and then downsampled to 16 kHz; consequently, this results in a signal that
is not strictly an impulse train but exhibits harmonic line structure similar to that observed in real
speech in regions of changing pitch. To account for the bandwidth constraint of the formant
structure (3.15) in both the u and 92 directions, we synthesize a diphthong /ey/ with initial (final)
formant frequencies of 669, 2349, 2973, 4000 Hz (437, 2761, 3372, 4000, Hz), and initial (final)
bandwidths of 65, 90, 156, 200 Hz (38, 66, 171, 200 Hz) [28]. An adaptive all-pole filter is
applied to the source to generate the speech signal.

In analysis, the STFT is computed using a 32-ms Hamming window, 1-ms frame interval, and
512-point discrete Fourier transform (DFT); GCT analysis is performed using region sizes of 875
Hz by 20 ms with an overlap factor of 4 in time and frequency directions. A 1 -D low- (high-)
pass filter is designed using the frequency sampling method assuming the extremal case of a 350-
Hz pitch such that the pass- (stop-) band is from 0 to 11A:

f1A = 0.5 A 2 = 0.5 1 2= 0.0893r (3.29)3
50ONSTFT 350 512

with a roll-off to 2 11A for the stop- (pass-) band [2]. The 1-D filter is rotated to form a circularly
symmetric 2-D filter using the frequency transformation method [29]. To assess the effect of the
bandwidth constraint (3.15) on the envelope, we low-pass filter the spectrogram of the signal. To
assess the effect of the 2-D envelope structure on pitch information, we perform peak-picking in
the GCT on a high-pass filtered version of the spectrogram; we denote the location of this peak in
the GCT as (0', Doj). Here, we note that filtering can result in time-frequency units of the
spectrogram (magnitude) exhibiting negative values such that it is no longer strictly a
"magnitude"; as will be subsequently demonstrated for filtering and other operations, use of such
modified "magnitudes" in approximate reconstruction of the spectrogram and waveforms can
nonetheless provide good representations of speech content. To assess the mapping of both pitch
and pitch-dynamic information in the GCT and effects of the formant structure, we use
(3.24),(3.25), and (3.26), and the center frequency of the time-frequency region analyzed to
compute the location of the first harmonic term in the GCT denoted as (vo, Do). As an error
metric, we compute the distance between these two terms E = (- vo) 2 + (do - fl0)2 .

We show in Figure 3-5 results of our analyses. Observe in Figure 3-5b that errors in the GCT
mapping of pitch information increase with frequency up to -0.1 for frequency regions W <
-0.5r; this effect is presumably due to the spectrogram exhibiting fanned harmonic line structure
for changing pitch in general that can only be approximated as parallel lines within local time-
frequency regions [16]. Observe that fanning is more severe in high-frequency regions and
consistent with this argument. In addition, the fanning effect appears to be more severe in lower-
pitch values (as evidenced by larger errors at the beginning of the vowel), presumably due to the
presence of more harmonics within the local time-frequency analyzed. For to > -0.7r (not
shown), we have observed substantial errors in the mapping up to ~ n; this is due to low-
amplitude formant structure suppressing harmonic content in these frequency regions as can be



observed in Figure 3-5a. Finally, in Figure 4c, we show the low-pass filtered spectrogram to be
compared with the true envelope spectrogram of Figure 3-5d. We scale both spectrograms such
that their maximum values are 1 and compute a root-mean-squared error (RMSE) of -0.068
between the two. Qualitatively, observe that while formant structure is generally maintained
from low-pass filtering, a widening of the bandwidths occurs from filtering. The low RMSE is
consistent with previous efforts in [19] that quantitatively demonstrated the GCT's utility in
obtaining improved spectral representations for formant estimation. Bandwidth widening can be
expected due to the bandwidth constraint of the 2-D envelope from (3.15).

(a) Diphthong Spectrogram (b) Errors in GCT Mapping
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Figure 3-5. (a) Spectrogram computed for diphthong vowel, localized region (rectangle),
and GCT-based peak-picking (inset; 'X'); near-origin terms in GCT ignored; (b) Radial
errors of peak-picking analysis from (a); (c) low-pass filtered version of (a); (d) true
formant envelope.

In a second simulation, we synthesize a 200-ms diphthong with start-to-end formant frequencies
(bandwidths) of 437 2761, 3372, 4000 Hz (38, 66, 171, 200 Hz) to 669, 2349, 2972, 4000 Hz (65,
90, 156, 200 Hz). The source signal is a pure impulse train with decreasing 200-Hz pitch of -0.2
Hz/ms. The spectrogram is computed using parameters as in the previous section. We show in
Figure 3-6 analysis of the diphthong in a local region of the increasing second formant. Figure
3-6c shows the WGCT of this region; for display purposes, the DC value is removed prior to
computing the WGCT. Observe that the near-DC terms are rotated at an angle relative to the fi-
axis consistent with the increasing formant frequency; replicas of these near-DC terms are located
at carrier positions reflecting the carrier as well. In Figure 3-6d, we show the results of
demodulating the two dominant peaks in Figure 3-6c to DC; briefly, the local region is multiplied
by a 2-D sinusoid generated from the parameters of the carrier corresponding to the first
harmonic in the GCT domain. For further details of the method, we refer the reader to Section
3.2.1. In the result, we restrict our display to the near-DC regions of the resulting WGCT due to
the presence of cross terms obtained in demodulation. Observe here that a set of rotated
components are obtained at DC to match those in Figure 3-6c, consistent with the modulation
model. Quantitatively, we compute the angle of the dominant peaks ('Theta') in the GCT in both
Figure 3-6c and Figure 3-6d showing that the demodulated terms exhibit close correspondence in
terms of orientation in relation to the original near-DC terms.
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Figure 3-6. (a) Narrowband spectrogram of diphthong with local region (white); (b) local
region of (a); (c) GCT of (b) with rotated (white line) envelope structure near origin; arrows
denote demodulation of carrier terms down to DC; white 'x' denotes carrier position used
in demodulation; (d) WGCT of demodulated version of (c) with comparable rotated
components to match that in (c). In (c) and (d), DC value is removed for illustrative
purposes; in (d), display limited to near-DC region due to presence of cross terms in
demodulation. Theta reflects the angle of the components computed describing their
orientation in (c-d) (counterclockwise relative to fl-axis).

3.1.2 Noise Model
2-D Model of Average Behavior: This section considers modeling of noise content (e.g.,
fricatives) in the short-time Fourier spectral magnitude and GCT domains. Consider a zero-mean
independent and identically distributed (i.i.d.) Gaussian process w[n] with standard deviation a.
Denoting the short-time Fourier transform of a realization of w[n] as w[n, co], we assume that 1)
each time-frequency unit in w[n, w] is statistically independent, and 2) the complex and real
components of a single time-frequency unit are independent and zero-mean, a 2 -variance
distributed Gaussian random variables. Under these assumptions, we view the magnitude of
w[n, to] as an i.i.d. Rayleigh process along both the n- and &o-axes since it is the magnitude of
two independent Gaussian random variables [30][31]. Iw[n, w]| can be characterized by its
autocorrelation function r~w[n', &'] from properties of the Rayleigh distribution, i.e.,

rww[n',w' ] = E[|w[n,co]Iw[n + n', o + &o'|]
= cxzS[n', a'] + 2. (3.30)

2 2

The power spectrum Sww(v, fl) in the GCT is therefore

S.,,(v, fl) = . 2 +'T28(V, fi). (3.31)
2 2



In GCT analysis, localized time-frequency regions are extracted using a 2-D window w[n, W].
From [2], we extend an analogous I -D spectral analysis result such that the power spectrum in
GCT analysis is a biased/smoothed version of (3.31), i.e.,

[4 - + rc* A I V 1 ) 1
Sww,GCT(V, fl) = [ .2 +-2(,)] *n IW21 (3.32)

7r021W (V, l)12 4 7 2p
2 2

p = ff _)"' I|(, n)2dvd 1 (3.33)

where W(v, fl) is the 2-D Fourier transform of w[n, w]. Our analysis indicates that noise content
is distributed across the entire GCT space along with a dominant term near the GCT origin.

2-D Model of Instantaneous Behavior: To model the instantaneous behavior of noise in each
local time-frequency region, we assume that noise results in a general 2-D random process across
the full spectrogram (denoted as E[n, w]). If a local region extracted with a 2-D window has size
in time and frequency (denoted as Ew [n, w]) such that in the GCT domain, it has sufficiently
"narrow" bandwidth, then the output of the filters to the input noise term will be uncorrelated
since the filters will occupy distinct regions in the GCT [32]. We may therefore interpret these
components using a Karhunen-Loeve expansion via any orthogonal basis set. As a choice of
basis, we pick a set of sinusoids corresponding in frequency to each complex exponential used in
computing the discrete-Fourier transform. Extracting a subset of these sinusoids based on their
amplitudes in the GCT domain (e.g., through peak-picking) results in an arbitrary set of sinusoids
in modeling Ew [n, o]; we can expect that selecting those components with the largest amplitudes
(e.g., largest KL expansion coefficients) would give a good approximation such that

E[n,c&] = D + Zk ak CcS k[n,&)] (3.34)

k = CoS 0 k 0+ sin Ok) + lPk- (3.35)

lk, Ok, Ok, and ak again correspond to spatial frequencies, orientations, phases, and amplitudes
of the 2-D sinusoids, and the D term corresponds to the DC component.

To incorporate the previous model of noise in relation to speech, consider e [n] as a realization of
an i.i.d. white Gaussian noise process w[n] such that it may be viewed as a deterministic signal.
We consider e[n] exciting (stationary) formant structure h[n] to generate the noisy speech signal
s[n], i.e.,

s[n] = e[n] * h[n] (3.36)

Within a local analysis window w[n - no] beginning at time no, the resulting signal is

s [n] ~ w[n - no](h[n] * e[n]) ; (w[n - no]e[n]) * h[n] (3.37)

with corresponding Fourier transform

s[no, w] = H[w]E[no, a)] (3.38)

E[no, to] = e[w] *,, W[w]e -wo (3.39)



where the windowed signal is approximated by the windowed noise realization convolved with
h[n] for w[n] varying slower than h[n] as in (3.9). The magnitude of this becomes

|s[no,(o]| = |H[co]E[no, o]| = |H[o]I|e[o] * W[co]e-j'fo | (3.40)

|s[no, w]| = |H[o]E[no, wl| = |H[w]l(D + Z'1 ak cos Pk[n, o]) (3.41)

le[o] * W[w]e-jmlo is the magnitude spectrogram computed using a window w[n] of the
realization e[n]. As previously argued, we approximate this as a sum of arbitrarily spaced 2-D
sinusoids. An analogous argument can be used to incorporate time-dependence in H[o] (i.e.,
H [no, o]) if it is assumed that each windowed segment is the result of convolving an
approximately stationary h[n; no] with e, [n]. The present development therefore argues for
speech exhibiting noise components (e.g., a fricative) noise comprised of a carrier term in the
form of arbitrarily spaced sinusoids modulated by an envelope term reflecting spectral shaping
effects. The corresponding GCT can be shown to be analogous to that of the voiced case (3.28)
though with carrier positions that are not harmonically related. The GCT will therefore similarly
exhibit a distribution of envelope content as a function of the carrier parameters as schematized in
Figure 3-4c-d.

Simulations: In describing the average behavior of noise in the GCT through models, we
invoked assumptions of independent spectral magnitude values across both time and frequency in
the spectrogram; this condition can be partially obtained if short-time and GCT processing is
done with analysis windows that are non-overlapping. As a simulation, we compute power
spectral density (PSD) estimates under such idealized conditions of non-overlapping short-time
analysis windows and non-overlapping 2-D local time-frequency regions. Specifically, a
spectrogram magnitude computed using a 32-ms window with no overlap and 512-point discrete-
Fourier transform was analyzed using nonoverlapping local time-frequency region sizes of 20 ms
by 875 Hz. In averaging the squared GCT magnitudes for each time-frequency region, we obtain
a PSD estimate in the GCT domain. As a quantitative metric, we scale both the estimate and
ideal PSDs to have a maximum value of unity to account for scaling effects and compute the root-
mean-squared-error (RMSE) between them (Figure 3-7). Consistent with a good match of the
estimate to the model, we observe an RMSE of 5e-4.
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Figure 3-7. (a) Spectrogram of Gaussian white noise computed using non-overlapping
window in short-time and GCT analysis; (b) ideal power spectrum; (c) estimated power
spectrum from averaging; (d) RMSE vs. number of regions averaged after normalizing
estimate and ideal to have maximum value of unity.
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Figure 3-8. (a) Spectrogram of Gaussian white noise (log scale) computed using overlapping
window; (b) Power spectrum in GCT from a single time-frequency region; (c) Ideal power
spectrum; (d) estimated power spectrum from averaging.
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Under typical processing conditions of the GCT, we use short-time and GCT analysis parameters
with substantial overlap as described in the previous section. To assess the effect that such
overlap has on the average noise representation, Figure 3-8 shows a comparison between the ideal
and estimated PSD for a spectrogram and GCT computed as in Section 3.1.1. Though the model
is able to capture the dominance of the DC term, observe that it fails to capture substantial
spectral shaping effects in the GCT such as peaks concentrated along K.-axis (Figure 3-8d). This
is consistent with the presence of horizontal striations in the spectrogram presumably due to
temporal correlation effects in short-time analysis. Figure 3-8b shows results of GCT analysis on
a single region, consistent with the average behavior of Figure 3-8d. Quantitatively, this results
in a RMSE (after scaling both to have maximum value of unity) of 2.42e-3, a fourfold increase
relative to the ideal case. This RMSE value is nonetheless "small" relative unity, consistent with
the relatively dominant near-DC component in both estimate and ideal PSDs. Observe that the
near-DC term in the estimate is -20 dB greater than all spectral shaping effects along the fl-axis.

(a) Original Spectrogram (b) High-pass Filtered
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Figure 3-9. (a) Spectrogram of vowel excited by Gaussian white noise; (b) high-pass filtered
version of (a) with localized region (red); inset shows local region (top) and corresponding
GCT magnitude with near-DC region removed for display purposes; model invokes a
distribution of envelope content at locations corresponding to the noise carrier; (c)
reconstructed spectrogram; (d) averaged spectra and associated RMSE values.

The modulation-based model proposed for speech that is "noisy" (e.g., a fricative) is proposed
under assumptions of "narrow" bandwidths in the GCT relative to the 2-D3 window used to extract
local time-frequency regions. Herein we evaluate the ability of the modulation model to
represent speech that is noisy. Specifically, consider a vowel formant structure with formant
(bandwidth) frequencies of 669, 2349, 2972, and 3500 (65, 90, 156, and 200) Hz excited by
Gaussian white noise [28]. Based on the modulation model, we expect that sinusoidal noise
carrier locations observed in the GCT spectrogram as "peaks" would correspond to modulated
versions of the underlying formant envelope. To test this hypothesis, aim to reconstruct the
spectrogramn by demodulation of envelope copies located at carrier locations. We refer the reader
to Section 3.2.1 for details of this method and focus on its results. We emphasize, however, that
our approach extracts only a subset of all peaks observed in the OCT for use as carriers in
demodulation as determined by a peak-amplitude threshold in the OCT domain (Section 3.2.2).



Consequently, the method does not correspond to the trivial reconstruction condition of a simple
2-D Fourier transform inversion.

Observe from Figure 3-9 that the reconstructed spectrogram matches closely to the original
indicating good representation of noise content with the 2-D sinusoidal carriers. Furthermore, in
Figure 3-9, we show the results of averaging across time all the spectral slices of the
spectrograms. While the average of both the reconstructed and original spectrogram result in a
spectral estimate very closely matched to that of the true formant envelope, as can be expected,
the average of the high-pass filtered spectrogram does not yield this result due to the removal of
the near-origin terms of the GCT. Root-mean-squared errors are computed on the raw spectra
without normalization and are shown in Figure 3-9d; these results are consistent with our
qualitative observations. Our results demonstrate empirically that the modulation framework
provides that a way to interpret speech that is noisy using a 2-D carrier with arbitrarily spaced
sinusoids modulated by an envelope structure.

3.1.3 Onsets/Offsets
2-D Model: Herein we model vertical edges observed in the spectrograms of speech (e.g.,
plosives) corresponding to onsets/offsets. Consider an isolated impulse i[n] located at No

i[n] = 8[n - No]. (3.42)

The short-time Fourier transform of i [n] is computed using a shifted Hamming window wm [n]

I[n, w] = m i[m]wm[m - nN]e'-j"" (3.43)

where N corresponds to the shift of the window in analysis. The STFT magnitude may be viewed
as a sampled Hamming window across time, i.e.,

|I[n, &|I| = |Z*=_. 6[m - No]wm [No - nN]e-jNo (3.44)

|i[n, &|I = |I[n]I = wm[No - nN] (3.45)

where N corresponds to the sampling rate of the window and corresponds to the frame rate of the
STFT. In the GCT domain, a time-domain impulse corresponds to the 2-D Fourier transform of a
downsampled Hamming window. GCT analysis in a local region using a 2-D window w [n, o]
such that

I(v, fi) = W(, [1) *V Wm* () e jvNo (3.46)

where *v denotes convolution along the v-axis and W(u, fi) is the 2-D Fourier transform of

w[n, o]. The Wm* (N) term in (3.46) will therefore have a (Hamming window) main lobe

accompanied with side lobe structure along the 'u-axis; the presence of W(u, fi) will additionally
expand the bandwidth of I(v, 11) based on the 2-D bandwidth of the main lobe of w[n, o].

In the context of real speech, onset/offsets generally occur in the presence of either voicing or
noise content (e.g., a voicing onset, a stop burst) [28]. In analyzing a region near an onset with a
local window, we may therefore obtain only a portion of the onset term in time followed by a flat
envelope upon entering the onset

0[n] = R[n]|I[n - no]l+ R[n - no - wi] (3.47)



R[n] = 1,0 5 n:5 no + wi
= 0, otherwise (3.48)

where w corresponds to some value less than the length of II[n - no]| (Figure 3-10). Since 0[n]
is only a function of n, we can expect the resulting GCT representation to be similarly
concentrated along the v-axis as in the ideal impulse case. We can view onset/offsets as an
envelope term A,(u, f) in (3.28) with the associated bandwidth constraints as in (3.15) for
formant structure. This envelope can be modulated by noise (e.g., plosive burst) or harmonic
carriers (e.g., voicing onset) represented by a sinusoidal series carrier.

R~n] R~n-w,] O[n]

I lIn-nJI

I n fn

Figure 3-10. Schematic in time for generation (left) of resulting onset envelope (right) term
including a voiced/noise onset; here wi is chosen to be exactly half of an onset. Beyond
(prior to) no + wi, harmonic/noise structure is present (absent) and is viewed as the carrier
component modulated by O[n].

Simulations: Figure 3-11 shows results of synthesizing and reconstructing voicing and noise
onset/offsets using demodulation. Specifically, in the GCT domain, we approximately
reconstruct the spectrogram by demodulation of envelope copies located at envelope locations as
a function of carrier positions. We refer the reader to Section 3.2.1 for details of this method and
focus on its results as in the noise case. The reconstruction in Figure 3-1 lb exhibits widening of
the onsets as may be expected from the bandlimited nature of the analysis/synthesis method.
Nonetheless, this widening is consistent with the envelope obtained in low-pass filtering the
original signal in Figure 3-11 c and as can be shown in filtering the reconstruction in Figure
3-11d. RMSE values are computed after scaling the estimate and original spectrograms to have
maximum value of unity and are consistent with our qualitative observations.
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Figure 3-11. (a) Spectrogram of voicing and noise onset/offset; (b) reconstruction of (a); (c)
low-pass filtered version of (a) demonstrating onset/offset envelopes; (d) as in (c) but for the
reconstruction in (b); associated RMSEs computed after normalization in all cases.

3.2 Spectrogram Analysis/Synthesis
Herein we describe algorithms for analysis/synthesis of the spectrogram to assess the utility of the
model in representing real speech. Overall, the algorithm consists of analyzing and synthesizing
local time-frequency regions of the spectrogram followed by overlap-add to obtain a spectrogram
estimate; an "upper limit" of waveform reconstruction is obtained by combining the spectrogram
estimate with the phase of the original signal (Figure 3-12).
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Figure 3-12. Flow diagram illustrating analysis/synthesis methodology.

(a) Original Spectrogram



3.2.1 Framework
Consider a narrowband spectrogram magnitude sf.u [n, m] computed for an utterance spoken by
a single speaker. Furthermore, recall that the GCT is assumed to exhibit concentrated terms near
the origin corresponding to an envelope. This occurs for voiced and unvoiced (e.g., noise source)
speech exhibiting vowel formant structure as well as onsets/offsets.
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Figure 3-13. (a) Single speaker in voiced region with harmonic (lines) and formant structure
(shaded). (b) GCT representation with formant envelope at origin denoted (hollow) as the
aim for reconstruction and hypothesized carrier terms; potential carrier locations from
peak-picking ('+'); reassignment of hypothesized carrier term locations (arrow, green); (c)
demodulation (direct) by hypothesized carriers (shaded, arrows) to recover envelope at
GCT origin (hollow); (d) demodulation (bootstrap) using reassigned carrier locations.

We adopt the experimental framework of [21] in estimating these terms using their replicas
located at distinct carrier positions through demodulation4 (Figure 3-13, Figure 3-13). As an
algorithmic convenience in anticipation of peak-picking in the GCT domain, we first apply a 2-D
high-pass filter hhp[n, o] to sfull [n, o] to obtain shp[n, o] and aim to estimate sfull [n, 0]
(denoted as su1 [n, a]). We obtain sfu11[n, o] using 2-D overlap-add (OLA) that combines
estimates of each localized region from GCT analysis under a least-squared error (LSE)
constraint in 2-D. Denoting w[n, m] as the 2-D window used in GCT analysis,

suui[nlx ] = E"m Etw[Tm-n,F-w]§ml[n,iw
XmsL Wm

2
[Tm-n,FLI-w]

where T and F (m and 1) denote the indices (step sizes) across the time and frequency dimensions,
and smj [n, w] corresponds to the estimate of a local region in GCT analysis.

3.2.2 Estimation of a Single Local Region
The s^M [n, w] are obtained from sinusoidal-series based demodulation and fitting using each
local region of the original and high-pass filtered spectrograms denoted as sm1[n, W] and
Shpml[n, to], respectively. In Figure 3-14 we show a flow graph of the estimation process for a

4 We refer to "demodulation" here as demodulation (i.e., multiplication) by a sinusoidal carrier as in
standard amplitude demodulation.



single local time-frequency region consisting of an envelope estimation and least-squared error
(LSE) fitting procedure. For clarity of discussion of the entire estimation process, we describe
first the overall algorithm assuming the carrier parameters from the carrier estimation step (green,
Figure 3-14). Subsequently, we discuss this component in detail.

"Envelope Estimation" (for 1...K)

"Carrier Estimation" "Demodulation"

s h,[n,&k]
+ +cos#dnel)i +hi,[n,w] - ilk[n e]

Least-Squared Error Fit
K K

Skf[n,] = Pkakn,&)]+ ak[n,()Jcosk[f, ]

k=1 k=1

Figure 3-14. Estimation of a single local region consisting of an envelope estimation (red)
step that is performed for each carrier position; the envelope estimation step consists of
generating the carrier parameters from prior pitch information and/or peak-picking
(green) and a demodulation step consisting of synthesizing the sinusoidal carrier,
multiplying it by the high-pass filtered local region, and low-pass filtering. The collected set
of envelopes are used in a least-squared error fit (black).

Overall Algorithm: In envelope estimation, carrier parameters for a single sinusoidal carrier are
determined using prior pitch and pitch-dynamic information (for voiced speech) and/or peak-
picking (e.g., for noise carriers) (green, Figure 3-14); subsequently, a demodulation step consists
of synthesizing a single sinusoidal carrier cos(Ok [n, 6)]) using these parameters, multiplying it
by the high-pass filtered local region shp,mt [n, m], and low-pass filtering by h1p [n, to] to generate
a single envelope estimate ak [n, (A] (blue, Figure 3-14), i.e.,

ak[n, 6o] = hi, [n, w] *,. [S,, [n, mIcos( k [n, o])] (3.50)

For interpretative purposes in the demodulation step summarized by (3.50), the GCT (i.e., 2-D
Fourier transform) of (3.50) is

Ak (V,fl

HIp (v, R) Shp,ml (Vil) *vf (3.51)
(V.5(e-lk5(v + Vk, -1 Gk) + eijk8(v - Uk,fl + fik)]

where ok, fk, and Ok are the two spatial frequencies and phase of the 2-D sinusoidal carrier,
respectively. In the GCT domain, demodulation corresponds to a convolution of impulses spaced
based on carrier parameters with the 2-D Fourier transform of the high-pass filtered local time-
frequency region. This can be shown to result in a component at the GCT origin reflecting the
replica of the envelope term located at the carrier position ('*' in Figure 3-15) and cross terms at
twice the spatial frequencies that are replicas of the original near-DC components in Shp k (, fl)
(i.e., 2 Vk and 2 .0) ('**' in Figure 3-15) [2]. Due to the presence these cross terms, a low-pass
filter HIp (v, 11) is applied to isolate the demodulated envelope term at the GCT origin (green
rectangle, Figure 3-15). Furthermore, ak [n, w] is a bandlimited (in the GCT domain) version of
the original envelope content as proposed in the model (3.22).
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Figure 3-15. Schematic illustrating demodulation steps in the GCT domain to obtain a
single ak[n, &] term with a convolution of (a) Shp,ml(V, f) with (b) a set of impulses
reflecting a single sinusoidal carrier 0. 5(e~1*k8(v + Vk,fl -- k) + eJ*k8(v - Vk, n + ik)
resulting in (c) a demodulated envelope at the origin; the latter result is low-pass filtered
(green) to remove effects of cross terms in demodulation to obtain ak [n, af]. In (a), filled
ovals represent replicas of the envelope located at distinct carrier positions; the original
envelope at the GCT origin is partially removed by high-pass filtering (unfilled oval); '*'
denotes the carrier position used for generating the carrier in (b) while '**' reflects twice
the carrier spatial frequencies.

The resulting set of dk [n, o] obtained in performing the envelope estimation steps K times are
then used to fit gain parameters f#i in relation to SkI [n, w] (i.e., the original local region of
sfull [n, w]) in a least-squared error (LSE) procedure (black, Figure 3-14)

smI [n, (] = Y=1 A dk [n, w] + E 1[fn, ]cosej4k[n, (A] (3.52)

where K corresponds to the number of carriers. In matrix form, (3.52) corresponds to A) =b,

i.e.,

a,1(1) -'' K
A = i. ] (3.53)

^1(Z) --- a^ (Z)

# smi(1) - =1ak(1l)cos4k(l)b (3.54)
smI(M - =L1 ak(Z)cosfkk(Z)

where we have indexed dk [n, w] and cos~k [n, o] in column form as dk (z) and COSk (z), and Z
corresponds to the total number of points within the local region skI [n, o]. (3.52) is
overdetermined when Z > K such that we may solve for f# in the least-squared error sense,

i.e.,#l = (ATA)-AT b.

Substituting the estimated gain terms into the right-hand side of (3.52) results in the estimate
smi [n, o] of smi [n, to].



(3.52) effectively uses the results of demodulating by multiple carriers to solve for the near-GCT-
origin terms of the region, thereby exploiting the series-model's distribution of copies of the
envelope content across the GCT space. Note that this method represents a generalization of the
single-sinusoidal demodulation technique presented in [21]. As an example, if higher-order
carrier terms corresponding to the envelope are poor estimates, the fitting procedure will weigh
these accordingly to minimize their contribution to the final estimate. Finally, as previously
noted, the described set of operations in demodulation, filtering, and least-squares fitting can
result in negative values of the spectrogram "magnitude" estimate. Despite this limitation, we
utilize these estimates directly in evaluating goodness of fit to the true magnitude as well in
waveform reconstruction.

Carrier Estimation: For carrier estimation, we first describe a method for obtaining a set of peak
locations in the GCT of shp,[n, o] (Shp,kL (V, d)). These peaks will be used subsequently in
determining carrier positions of both voiced and unvoiced speech for use in demodulation.

(a) Noise Reaon (b) GCT Mag. + Peaks

Time (n) ula

(c) Harmonic Raon (d GCT Mao. + Peeks

TI
Time (n) ula

Figure 3-16 (a) Noise region; (b) GCT magnitude of (a) with peaks (white, 'x'); (c) harmonic
region ; (d) as in (b) but for (d); for display purposes GCTs are shown only for 0 < 12/i < 1.

GCT-domain Peak Picking: The magnitude of Shykl (v, 12) is used to obtain a set of peak
locations by first computing first-differences between each coordinate's 8 nearest neighbors

|S(±),(D±)(u,2)| = |Shp,kl(v(±dv),2(±df))| - |Sh,k(V,12)| (3.55)

where dv and d2 represent step sizes in the discrete representation of Shp,kl (v, 12). The resulting
estimates are used to generate individual binary masks, e.g.,

B(vI),(n S(v)( )(v, 2)| > 0. (3.56)

An additional binary mask is formed by thresholding the magnitude of |Sfp,k (V, 12)1

Bmag = IShp,ki (u, 12)1 > ymax[IpShp(v,D)|] (3.57(3.57)
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where y = 10 20, i.e., remove points 30 dB below the maximum value of the GCT magnitude. In
addition, a binary mask is formed based on removing peak candidates located in the region

0 < IfIl < 2MA, where 2MA = A 2a = 0.1761r with fA defined as in (3.15), i.e.,
350 NSFFT

BnA(v,fl) = 0,for 0 < II < MA (3.58)
1, otherwise

The latter mask removes all components above the maximum pitch value of 350 Hz assumed to
be present in the speech analyzed as well as components along the v axis. A final binary mask

Bfinai = Bmagf(fl=i Bo,2) n B., (3.59)

is applied to IShp,kl(u, D)|, where Bo,n corresponds to the 8 masks from (3.55). The resulting
mask obtains peak locations that are the maximum amongst their 8 nearest neighbors and exhibit
a minimal magnitude of 30 dB below the maximum value of the GCT magnitude. For our
subsequent discussion, denote this set of locations as the set P := tviP, Di,p} i = 1, ... , Np, where
N, is the total number of peaks obtained for the region. Figure 3-16 illustrates the results of this
peak-picking in both the noise and harmonic-source case, indicating its ability to obtain harmonic
and non-harmonically related peaks.

For demodulation, we consider an a priori pitch estimate of the full utterance across time denoted
as fo (n); these estimates are computed such that zero values in fo (n) denote unvoiced or silent
time points. For Sp,kl[n, o] ranging from time no to n and centered at fcenter, we obtain the 2-D
carrier frequencies for the voiced case using a direct and bootstrapping technique. The former
method is motivated from the proposed signal model while the latter is motivated from observed
limitations and properties of the model.

Voiced Case - Direct: When fo(n) contains at least one non-zero pitch value, we view the region
as a partially/fully voiced region such that the 2-D sinusoidal parameters can be obtained from
fo(n). Specifically, given the non-zero values of fo(no) through fo(ni), we compute their
average to represent the pitch value of the entire region (fo,mi). Next, we compute one-step
differences across the non-zero values of fo(n) and compute the mode of this set of differences as

df fo~md dfo
an estimate of the pitch track slope ( ). fo,mi, ,, and fcenter are substituted into (3.24)

through (3.26) to solve for f2 and 0. xy is computed as

ip = angle{Smhp(V1 ,fl 1 )} (3.60)
v1 = d2 cos 0, 2 = 12 sin 0 (3.61)

v1 and D1 are then scaled by k = 1, ..., ND where

ND = min (floor T-r} , floor {;-}) (3.62)

to generate the set D := {V,D, 2
i,D} i = 1, ..., ND. The phase parameters #i, are obtained from

(3.61) with Vi,D and 2
iD ,



The present approach for determining the carrier parameters uses the signal model for voiced
speech directly. We use this method as a reference to assess the utility of the model in estimates
of the original spectrogram despite the limitations highlighted in Section 3.1.1.

Voiced Case - Bootstrapping: As previously shown, the voiced signal model can exhibit errors in
the mapping of the pitch and pitch derivative information to the GCT. Motivated from these
observations, we propose an alternative bootstrapping method for estimating the carrier
parameters directly from the GCT using the previously described set of peaks P := {vi,P, Di,p) i =
1, ..., Np. Specifically, we assign (v10 o, Dl1,B 0) (i.e., the first harmonic in the GCT domain) as
corresponding to the location mapped pitch location using (3.24) and (3.26). A set B0 :=

(V1,B 0 i, D12,B0 i) for i = 1, ..., NBO is computed by scaling the (Viuo, 2
1,Bo) location as in the set D.

Next, a distance matrix DB._p (i, j) is computed between the sets B0 and P , i.e.,

DB0 -P(i = 1, ... , N80,j = 1, ... , N,) = (Vi,B 0 - V,,)2 + (fli,B0  .oj,)2 (3.63)

Each location (Vi,BO, fiBO) in Bo is then reassigned to the closest location in P according to the
minimum radial distance (i.e., in DBO-P) using an iterative algorithm as follows:

initialize A=(j
for 1 through NBO
1) Find the minimal value of D.o _p(i, j) V(i, j) fAA. (3.64)
2) Reassign the ith hypothesized carrier parameter to the j'f carrier

parameter.
3) Add all indices of the ith row and jth column of D80-P to A.

Figure 3-13 schematically shows this algorithm in the GCT space. This method maintains
uniqueness of the reassigned locations and restricts the set of carriers in each region to be those
estimated from the GCT itself. This contrasts the direct approach in which they are obtained from
mapping the pitch information to the GCT domain. Carrier phase values are obtained by
substituting the reassigned locations into (3.61).

Unvoiced Case: If fo(n) exhibits all zero values, we adopt the noise carrier modulation model
(Section 3.1.2) as represented by a sum of non-harmonically related sinusoids. We therefore use
all of the locations obtained from peak-picking the GCT as the carrier parameters.

3.3 Reference Approach using Sinusoidal Series Only
The previous section has described a demodulation framework for reconstruction of high-pass
filtered spectrograms. Herein we describe an alternative approach that assesses the value of the
model in relation to the envelope terms -k [n, w] in (3.50). If we assume ak [n, &] = 1 for all k,
the demodulation procedure is in essence fitting a sinusoidal series model to the local time-
frequency region, i.e., (3.52) becomes

sum [n, (a] = 0 =fkcosyk [n, w] (3.65)

where we use the k = 0 term to correspond to an arbitrary DC value. In practice, the local region
is windowed such that the fit is performed on windowed versions of the sinusoids. An analogous
set of least-squared error equations may be solved to obtain the fit as in the demodulation case
and overlap-add may be performed to obtain the spectrogram estimate. The purpose of using this
reference method is to distinguish the contribution of the bandwidth of ak [n, w] to reconstruction.



In using the sinusoidal series we use carriers obtained from both the direct mappings as well as
the bootstrapping methods as in the demodulation techniques.

3.4 Co-channel Speaker Separation
This section describes two algorithms using the proposed signal model for co-channel speaker
separation. We emphasize that our aim is in evaluating utility of the signal model and assume a
priori knowledge of the pitch trajectories of individual speakers. To develop a complete
separation system, pitch estimates may be obtained from existing multi-pitch estimation methods
proposed in the literature [33][34] and those based on the GCT (see Chapter 5, Chapter 6).

Consider a spectrogram computed on an additive mixture of two speakers denoted as
smixfull [n, o]. We approximate a local region smix [n, o] of smixfull [n, o] as the sum of two
distinct models of speech corresponding to each speaker, i.e.,

Smix[n, &)] z =1 [a [n, &)](Di + k ai, cos $,k[n, o]] (3.66)

#.k I[n, &)] = fli,k(n cos 6
i,k + ) sin ei,k) + Pi,k (3.67)

where i corresponds to the i' speaker and k corresponds to the k term in the sinusoidal series.
As in the single-speaker case, ai [n, o], cos #i,k[n, o], and #i,k [n, w] correspond to the envelope,
carrier, and carrier parameter terms, respectively, and Di and ai,k are arbitrary gain terms. The
GCT of (3.66) is then

Smix(V, n) = Z? 1 E (DiAi(V, D) + Mi,k (v, fl) + Mitk(v, )~) (3.68)

Mik(v,fJ)i = 0.5ai,ke±P*i-kAi,k(V T fi,k COS Oi,k, 1 2 ± i,k sin 0,k) (3.69)

Observe from (3.68) that the DiAi(v,D1) terms can be expected to exhibit overlap at the GCT
origin. This multi-speaker model is an approximation and is based on an assumption of linearity
in the spectral magnitude domain; as we subsequently show, this approximation can lead to good
separation results under certain conditions. Nonetheless, future work aims to explore explicitly
limitations of this assumption for improved separation performance as well as the role of phase in
the GCT context.



( (a)(b

Figure 3-17. (a) Voiced-on-voiced local region with distinct speakers' (red, blue) harmonic
(lines) and formant structure (shaded); (b) GCT of (a) showing demodulation (green arrow)
of a single term for each speaker; '+' and 'x' are both used in direct method; 'x' is excluded
in exclusion method due to a lower harmonic number in the GCT; overlapped and removed
near-origin terms are shown as hollow components to be recovered (c) voiced-on-unvoiced
region; (d) GCT of (c); noise terms overlapped with voiced carriers are always excluded in
demodulation in this case.

Figure 3-17 illustrates schematically the mapping of multi-speaker content in the GCT domain for
voiced and unvoiced speech. As shown from (3.68), the DgA (v, f2) of the two speakers will be
overlapped at the GCT origin; however, their replicas located at speaker-specific carrier locations
are distributed throughout the GCT space and can exhibit separability. An algorithm for speaker
separation can then be developed that is similar to performing analysis/synthesis of a single
speaker. Specifically, localized time-frequency regions of the mixture spectrogram can be
modeled using (3.66) as a basis for estimating the envelope and carriers modulated by the
envelope for individual speakers. Envelope terms at the GCT origin are estimated from their
replicas at distinct carrier locations for individual speakers. Performing this across localized
regions and combining the estimates using overlap-add as in (3.49) can be used to obtain the
spectrogram estimate for individual speakers. Subsequently, we describe two algorithms for
computing estimates of individual speakers within local time-frequency regions of the mixture
spectrogram.

3.4.1 Direct Method
Figure 3-18 summarizes an approach we refer to as the direct method of estimation. Only minor
differences exist between this algorithm and that of analysis/synthesis for a single speaker. As in
that discussion, we describe first the overall algorithm under the assumption of known carrier
parameters and discuss the carrier estimation step subsequently in details.



"Envelope Estimation" (for i = 1, 2: for k = 1...K,)

Regularized Least-Squared Error Fit
2 Ni 2 N1

smxm P; (a] = i di InJf + X1tl,k [n, &)J CO i4k In ()
i=1 k=1

Figure 3-18. Algorithm for estimation of envelope and carriers modulated by envelopes of
individual speakers from a mixture spectrogram.

Overall Algorithm: The envelope estimation procedure is performed for each speaker i = 1,2
across Ki carrier terms. In the carrier estimation step, prior pitch information from each
individual speakers is used to determine the carrier parameters. In demodulation, a local region
of the high-pass filtered mixture spectrogram (denoted as Smixhp,ml [n, w]) is multiplied by the
speaker specific sinusoidal carrier cos(i,k [n, to]) and low-pass filtered by hip [n, w] to obtain a
speaker-specific envelope estimate adi,k [n, w]. These envelope estimates are then used in an least-
squared error (LSE) fitting procedure fit to the local time-frequency region of the mixture
spectrogram (denoted as smix,ml [n, (j], i.e.,

smx[n, O] =

L=1 E 1 #A,kadkk[n, a)] + Y 1, 1 1i,ak[, O] CO s L,k[ o] (.

The resulting f#,k gain terms are combined with their respective carrier and envelope estimates to
obtain an estimate of speaker i, i.e.,

st[n, cv] = Ek1 fi,kaa,[' ] + Estk ,ak[n, &)] cos Pi,[n, a)] (3.71)

(3.70) represents an analogous system of overdetermined equations as in (3.52). Specifically, we
have that

m , ., se[n, (3.72)
smix n, W] - L=k=1 l A o[n,]cos i,kn, &] z a1 [ n, + a 2[n,a]

Senvfl, cv) = 2=1 Ek 1i,kai,k[n, &]. (3.73)

For conciseness, we denote Am ,Pbn, and f#m as the matrix containing all values of ,k [n, c],
senv,[n, (o], and fi,k such that a least-squares formulation of the gain parameters f#i,k is again
ArmAmlm = AT bm as in the single speaker case. (3.70) uses multiple envelope representations
from demodulation to solve for the sum of a1 [n, w] and a2[n, w].

Regularized Least Squares Fitting: In contrast to the single-speaker case, the matrix AmTAm
arising from the least-squares formulation of the equation can become singular/near-singular



under certain conditions. For instance, if both the pitch values and dynamic information of the
pitch of the two speakers are similar, we can expect to get 2-D carriers that are nearly identical.
We detect the extent to which the resulting matrix is singular using

|Amaxl
c2 = Ajm (3.74)

where Amax and Amin are the eigenvalues of AmTAm that have maximum and minimum absolute
values. If the matrix has a value of c2 smaller than a threshold y, we solve the least squares
problem directly. Otherwise we solve a regularized least squares problem [35]

(AmTAm + (I)flm = AM bM (3.75)

Amax - YAmin (3.76)
y - 1

where f is a diagonal loading factor, and I is the identity matrix, thereby forcing C2 = y for
/ T (TT(Am Am + (I) and a solution ftm = (Am Am + {I) Ambn. The estimated gains are

substituted into single speaker models to obtain s. [n, (A], for each speaker i

si,[n, &)] = Z+k1 , i,ka [n, o] + k-_ ai,k[n, o] cos Ci,f[n, ] (3.77)

Carrier Estimation: To obtain the carrier parameters for each speaker for use in demodulation,
we assume a priori pitch estimates fi [n] and f2 [n] corresponding to the two speakers across a
local region smixm [n, w] in time. We consider three cases as determined by fi [n] and f2 [n] in

Smix,hp [n, a)]: voiced-on-voiced, voiced-on-unvoiced, unvoiced-on-unvoiced.

Voiced-on-voiced: If both fi [n] and f2 [n] exhibit at least one non-zero value of pitch in
smix,hp [n, to], we consider the region to be consist of two voiced components. In contrast to the
single-speaker case, peak picking in the GCT domain can lead to peaks with ambiguous
assignments since 1) the effects of the envelope in the modulation model can shift the location of
the peak away from the ideal pitch information mapping and 2) local formant structure from
multiple speakers overlaps/interacts for carriers that are located close to each other in the GCT
space. Due to this ambiguity, we map pitch information to the GCT domain directly as in the
direct method for single-speaker resynthesis.

Voiced-on-unvoiced: If either fi [n] or f2 [n] exhibit at least one non-zero value and the other
exhibits all zero values in smix,hp [n, to], we consider the region as voiced-on-unvoiced. Carrier
positions for the voiced speaker are again obtained using the direct mapping. Peak-picking is
then done on the GCT domain to obtain noise carrier locations. Similar to the voiced-on-voiced
case, these carriers exhibit ambiguity in assignment. To account for this, we remove carriers
obtained in peak-picking that are within a threshold of D, = 2A = 0.1786rr away from the
mapped locations of the voiced carriers as motivated from our bandwidth constraint in Section
3.1.1 for the envelope. The remaining carriers obtained in peak-picking are assigned to the
unvoiced speaker. In the present formulation, it is possible that no carriers are assigned to the
unvoiced speaker if all peak positions are pruned away in relation to the mapped pitch conditions.
In this case, we subtract the least-squares fit of smix [n, w] from a single speaker (i.e., the speaker
with carriers assigned) as an estimate of the unassigned speaker, e.g., if speaker 1 has no carriers



S1[n, W] = Smei[ln, W] - 2 [n,]. (3

Unvoiced-on-unvoiced: If both fi[n] and f2 [n] consist entirely of zeros, the region is unvoiced-
on-unvoiced. In this case, a set of carriers is obtained from directly peak-picking the GCT as in
the unvoiced case for a single speaker. In this case, we set estimates of individual speakers as
half the amplitude of the least-squares fit to both speakers, i.e.,

S1 [n, V] = s2,U[n, o 2]= ' (3.79)

where s12 [n, to] is the fit to the region assuming a single speaker and sil,u [n, o] = s2,u [n, o] are
new estimates of each speaker.

3.4.2 Exclusion and Re-estimation Method
As alluded to in our previous discussion, overlap of envelope content corresponding to distinct
speakers in the GCT at carrier locations may reduce the effectiveness of speaker separation using
the direct approach. In particular, demodulating a term that contains envelope content from both
speakers can lead to erroneous estimates of the envelope. A schematic of such overlap is shown
in Figure 3-19. Herein we describe a method for excluding carrier terms in demodulation for
envelope estimation and subsequent re-estimation of carrier terms. This method is applied to the
voiced-on-voiced condition while the voiced-on-unvoiced and unvoiced-on-unvoiced conditions
are solved as in the direct method. Figure 3-19 illustrates this algorithm in detail.

"Envelope Estimation" (for i = 1, 2: for k = 1...K,)

"Carrier Estimation,, "Demodulation"

Regularized Least-Squared Error Fit to Envelopes

Regularized Least-Squared Error Re-estimation
s,,a ,[n,(wl = I' I i[it a ]+ (Ala i * kco&[,W)= _ ~uo J ln(ajnciIalcosj.f[ 1)

Figure 3-19. Schematic illustrating exclusion/re-estimation method; the full set of carrier
positions are used to generate modulated envelopes subtracted from smixmL [n, (] to form
Senv [n, W]; senv [n, &] is fit using a subset of the demodulated envelopes (denoted by N in
the envelope fitting step). Envelope estimates are then combined with the full set of carriers
in a final re-estimation step.

We consider again the set of carrier positions obtained from the direct pitch mapping of the two
speakers denoted as S1 := (ik, 121k), k = 1,2, ..., Ni and S2 := (&21,1221), l = 1,2, ... , N2. We
compute the distance between all elements of S1 and S2, i.e.,

Dsis 2 (k = 1, ..., N1 , 1 = 1, ..., N2 ) = V(to1 k - 021)2 + (121k - 122)2 (3.80)

(3.78)



For each element in Ds1,s2 (k, 1) < 2 MA = 0.1786r, we obtain subsets S and S2 from S1 and S2
by removing carrier values with strictly larger carrier numbers, e.g., removal of k'e carrier if k > 1,
removal of l' if 1 > k. An example of such removal is shown in Figure 3-16, in which the 2nd

harmonic of the red speaker is excluded while the first harmonic of the blue speaker is kept. This
results in the subsets S1 and S2 with sizes N1  Ni, i = 1,2. The use of harmonic order for
pruning is motivated from our observations in Section 3.1.1 indicating that the magnitudes of the
sinusoidal carrier series in the GCT decrease with increasing number (e.g., Figure 3-2). Since
carriers of a speaker are pruned when their carrier numbers are strictly greater than that of the
other speaker, the method guarantees at least one carrier per speaker in the resulting subsets.

For demodulation, as in the direct method, the full set of carriers are first used to generate
modulated envelope representations ai,k [n, v]cos4i,k[n, w], k = 1,2, ..., N, + N2, i = 1,2 and
subtracted from s,ix [n, w] to approximate the sum of the envelopes alone (3.72). In the
exclusion method, we then use the subset of the ai,k [n, (0] obtained from the carrier positions in
S1 and S2 to estimate gain parameter values and subsequently the envelope estimates of a1 [n, w]
and a2[n, a)] denoted as a[n, w] and di&n, cv], i.e.,

semn, =mk [n, cv] cos 4
1,k [n, ] =SenvL k[n, iv] [n omi)m [n, cv]k [n (A)] kTh (3.81)

Ni a
F41 -(3.81)

de [n, to] = Zk 1 fl,ka,k [n, v], i = 1,2 (3.82)

where Ng N and Sen, [n, w] is defined as in (3.72). Note that the summation of envelopes on
the right-hand side of (3.81) for each speaker ranges from k = 1 through k = N1 (rather than
k = Ni in the direct method) indicating that only envelopes obtained from the subset of pruned
carriers S1 and S2 are used in envelope estimation. f#i,k are solved using the previously
described least-squares and (when necessary) regularized least-squares methods. This method
aims to obtain envelope estimates from carrier terms while attempting to minimize the effects of
overlapped envelope structure of distinct speakers at carrier locations in the GCT space.

Envelope estimates are then combined with thefull set of carriers for each speaker to solve for the
carrier amplitudes denoted as ai,k in re-estimation step,

smix[n, cv] = EL=1 di[n, ov] + E=1 (di[n, a)] E:i1 ai,kcos ki,k[n, W]) (3.83)

(3.83) is solved again using the least squares methods, and the resulting gains are combined with
the envelope and carriers of individual speakers. The current exclusion/re-estimation procedure
exploits the distribution of replicas of the envelope term in the GCT space to account for
overlapped versions of envelopes both at the origin as well as at carrier positions.

3.4.3 Reference Method and Fusion
The previous sections have discussed GCT-based approaches to speech-signal separation using
prior pitch information. As a reference signal representation for the co-channel speaker
separation task, we apply a standard frame-based sinusoidal-based separation method developed
first in [23] and extended in [36] with similarities to the method developed in [27] that requires a
priori pitch information [23]. Specifically, the system of [23] is modified in several ways to
address issues of singular least-squared error matrices as well as handle unvoiced speech. We



refer the reader to Appendix B for discussion of the specific modifications and [23] for the
general setup of the method.

In addition to the reference method, we sought to assess potential benefits of fusing the output of
the GCT-based method with the sinusoidal-based method. Fusion allows us to assess the extent
to which the GCT-based methods can provide additional "complementary" information in
separation, distinct from that using the reference sinusoidal-based method. As one motivation for
fusion, recall that the GCT signal model explicitly represents temporal pitch dynamic content
(i.e., the rotation of harmonic structure 0 in Figure 3-4). It is conceivable therefore that speakers
exhibiting similar pitch values but different pitch dynamics can be better separated in the GCT
space in contrast frame-based sinusoidal method that relies on pitch values only in estimating
parameters to the individual speakers. As a simple example of this, Figure 3-20 schematizes a
narrowband region in which two speakers have similar pitch values as measured by the vertical
distance of components in the GCT domain but different pitch dynamics.

"' (a) (b)
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Figure 3-20. (a) Schematic of two speakers in a local time-frequency region with similar
pitch values but distinct pitch dynamics; (b) in the corresponding GCT domain, separation
of replicas of envelope content (overlapped at the GCT origin) can still be maintained due to
this distinction in pitch dynamics despite similar pitch values as represented by vertical
distance of components to v axis (dashed lines).

As an additional estimate of individual speakers, we therefore consider a simple fusion method
using a weighted sum of the GCT-based and sinusoidal-based systems, i.e.,

frused[n] = a^n.,ow [n] + (1 - a)sine [n] (3.84)

where 0 a 1. a is tuned on a development set of narrowband estimates to maximize the
overall average signal-to-noise ratio. Here, £narrow [n] refers to the GCT estimate and sine [n]
refers to the reference sinusoidal-based (frame-based) method.

3.5 Evaluation
Herein we discuss methods and results for spectrogram analysis/synthesis and speaker separation.

3.5.1 Data Set
In our experiments, we use a subset of the TIMIT corpus sampled at 16 kHz [37]. For
analysis/synthesis of spectrograms, 10 males and 10 females speaking 2 distinct utterances are
used for a total of 40 examples. We use two data sets for development and final testing. The
final test set is generated from 4 males and 4 females speaking 2 sentences. Sentences are



additively mixed after truncating to the minimum length of the two with 0 dB overall signal-to-
signal ratio; care was taken such that each mixture contains distinct speakers and sentences. This
results in 24 male-male (MM), 24 female-female (FF), and 64 female-male (FM) mixtures. A set
of 15 mixtures (5 each MM, FM, FF) from a distinct set of 3 males and 3 females were used in
development. The Wavesurfer software package was used to estimate the pitch trajectories of all
sentences individually prior to analysis [38].

As described in Section 2.2, the speaker separation problem has been addressed under a variety of
different formulations/constraints imposed on the problem. Our focus is on single-channel,
speaker independent methods. In this context, data in the existing literature has generally been
further constrained to reflect the separation capabilities of proposed systems. As an example, the
sinusoidal-based (that is frame-based) separation system was evaluated strictly on all-voiced data
without the inclusion of unvoiced speech and/or pauses between words for both the target and
interferer (e.g., "Nanny may know my meaning", "Why were you away a year Roy?") [23].
Alternatively, in auditory-based approaches such as that by Wu, et al. [39], the underlying target
was chosen to be strictly voiced but interfering speech was allowed to have voiced and unvoiced
components. Furthermore, analyses of the data used in these experiments indicated that the
underlying pitch trajectories of speakers exhibited no crossings or mergings. For these reasons,
we chose in this thesis to evaluate our algorithms on what we believe to be a more general
database accounting for voiced/unvoiced mixtures as well as allowing for pitch trajectory merging
and crossings. An example is shown in Figure 3-21 highlighting the presence of both conditions
for a mixture of two female speakers. Observe that at time 400 ms that the pitch tracks of both
speakers are very close in frequency, thereby approaching a "merging" of the pitch tracks.
Similarly, at time -900 ms, observe that speaker 2's pitch track exhibits a crossing with that of
speaker 1; specifically, speaker 2 has decreasing pitch at this time point while speaker 1 has
increasing pitch.
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Figure 3-21. (a) Waveforms of two female speakers ("Anything wrong Captain?" + "With
his club foot, he might well..."); (b) Pitch tracks of speakers exhibiting unvoiced and voiced
speech (pitch values of zero indicate silence/unvoiced speech) and pitch crossings.



3.5.2 Spectrogram Analysis/Synthesis
Specific Methods: A narrowband spectrogram sftuu [n, a] is computed on the signal Xsingle [t]
using a 32-ms Hamming window, 1-ms frame interval, a 512-point discrete Fourier transform
(DFT). In GCT analysis, local regions of size 875 Hz by 20 ms are extracted using a 2-D
modified Hamming window with overlap factor of 4 to ensure the constant-overlap-add criterion
in 2-D [1]. The GCT is computed using a 512-point 2-D DFT. A high-pass (low-pass) 2-D filter
hhp[n, o] (hjp[n, o)]) is designed using a 1-D filter designed using the frequency sampling
method followed by the frequency transformation method [2][29]. hhp[n, O] (hp[n, o]) has
order 80 with pass-band (stop-band) beginning at DA = 0.0893r (Section 3.1.1) and stop-band
(pass-band) roll-off to 2 DA. hhp[n, o] is applied to sfuul [n, o] to obtain sfUll fp[n, (o].

Sfull,hp [n, (o] is multiplied by a set of sinusoidal carriers generated from the pitch track and each
product is low-pass filtered by hjp[n, o] to obtain a set of dgk[n, co] for use in demodulation
(Section 3.2.1).

Two quantitative metrics are used to compare the results of spectrogram analysis/synthesis. In
the first, we directly compute the root-mean-squared-error between the estimated spectrogram
and the reference spectrogram across all time-frequency points, i.e.,

RMSE = ENM [sfuu[n,o] -ful [n,o] (3.85)

where ON denotes the total number of DFT frequency bins in the spectrogram. In addition,
sfull[n, o] is combined with the phase of the original single-speaker sentence to resynthesize a
waveform of a single speaker using the least-squared error (LSE) overlap-add method (LSE-
OLA) [1] to generate 2single [t]. Note that xsingle [n] represents an "upper limit" of resynthesis
performance of the waveform using the 2-D signal model due to the use of the original phase in
reconstruction. Based on this waveform estimate, we compute a signal-to-noise (SNR) ratio of
xsingte [n] defined as

SNR = 10log t.x2stngle[f]]2 (3.86)
\Et1xsingte[nl-2singre[n]]

Results: In Figure 3-22, we show the results of analysis/synthesis of a single utterance spoken by
a male. Observe that while both the direct and bootstrapping techniques with demodulation
preserve the general characteristics of the harmonic, noise, and onset/offset structure of the
original spectrogram. An outstanding limitation in both cases appears to be modest widening of
the harmonic and formant structure, presumably due to bandwidth constraints of the model (3.15).
Relative to the direct approach, bootstrapping appears to introduce fewer distortions in harmonic
structure, presumably due to more accurate demodulation results (e.g., at time n = 1000).
Similar relative effects were observed on male speakers. In contrast, observe that the two-
dimensional sinusoidal-series fit (see Section 3.3) exhibits widening of the formant bandwidths as
well as that of onsets/offsets due to the lack of an envelope term in reconstruction. In Figure
3-23, we show a representative example of this effect for formant structure; observe that while
both demodulation capture the sharp harmonic and nearby content at W ~ 0.087r, the sinusoids
fail to do so. Similarly, Figure 3-24 shows the time slices of a vowel onset; while both
demodulation approaches capture the sharpness of this onset, the sinusoidal-only model results in
substantial smoothing effects. Quantitatively, Table 3-1 lists the average root-mean-squared
errors of the methods, indicating that the bootstrapping technique provides gains over the direct
method of -0.02 RMSE while both demodulation methods outperform the sinusoidal-only



approach. These results demonstrate the significance of the envelope term in the modulation
model in representing onset/offset content as well as formant structure.

Table 3-1 further lists the average signal-to-noise ratios of the waveforms when the estimated
magnitudes are combined with the true phase of the original signal; recall that these represent
"upper limits" of waveform reconstructions due to use of the original phase potentially recovering
magnitude information lost due to limitations of the signal model. Overall, the waveform
reconstruction results in SNR of at least ~11 dB. In informal listening, listeners (non-authors)
reported indistinguishable waveforms between the original and bootstrap and direct methods.
However, the sinusoidal-series fit was described as substantially more "muffled" and "rough" in
relation to the original. These results are consistent with accurate magnitude modeling using both
the direct and bootstrapping methods. Waveform quality is presumably maintained by a
combination of this modeling and use of the phase of the original signal in waveform
reconstruction. Our results demonstrate empirically that the relative poor estimates of
spectrogram magnitudes using the 2-D sinusoidal-series fits cannot be recovered using phase
information.

3.5.3 Co-channel Speaker Separation
Specific Methods: In speaker separation, the mixed signal xmix [n] is processed as in the single-
speaker case for short-time and GCT analysis. The reconstructed spectrograms are combined
with the phase of the mixed signal, and the waveform t [n] is reconstructed using the LSE-OLA
method as in the single-speaker case. Since the mixtures were created at 0 dB signal-to-signal
ratio, we compute the signal to interferer gain as a goodness metric,

GainSNR,i 1009 ] (3.87)
Et[xa~n1-2djn]]T

where xi [t] is the original (unmixed) utterance. In the least-squares formulation, the c2
parameter (i.e., the threshold for determining diagonal loading (3.75)), is tuned on the
development set with values [100, 101,..., 106] for both the direct and exclusion methods. The
best c2 values based on the average SNR gain was then applied to the final test set; in our
development, we observed that c2 values ranging from 100 through 103 provided similar results
and set c2 = 102. Finally, in fusion, we swept a values in step sizes of 0.01 on separation results
from the development set obtained using the GCT-based "exclusion/re-estimation" approach and
sinusoidal-based method. An "optimal" a value of 0.49 was obtained and used on the test set.

Results: In Figure 3-22, we show the results of analysis/synthesis of a single utterance spoken by
a male. Observe that while both the direct and bootstrapping techniques with demodulation
preserve the general characteristics of the harmonic, noise, and onset/offset structure of the
original spectrogram. An outstanding limitation in both cases appears to be modest widening of
the harmonic and formant structure, presumably due to bandwidth constraints of the model (3.15).
Relative to the direct approach, bootstrapping appears to introduce fewer distortions in harmonic
structure, presumably due to more accurate demodulation results (e.g., at time n = 1000).
Similar relative effects were observed on male speakers. In contrast, observe that the sinusoidal-
only model exhibits widening of the formant bandwidths as well as that of onsets/offsets due to
the lack of an envelope term in reconstruction. In Figure 3-23, we show a representative example
of this effect for formant structure; observe that while both demodulation methods capture the
sharp harmonic and nearby content at o ~ 0.081r, the sinusoidal method fails to do so. Similarly,
Figure 3-24 shows the time slices of a vowel onset; while both demodulation approaches capture
the sharpness of this onset, the sinusoidal-only model results in substantial smoothing effects.



Quantitatively, Table 3-1 lists the average root-mean-squared errors of the methods, indicating
that the bootstrapping technique provides gains over the direct method of -0.02 RMSE while
both demodulation methods outperform the sinusoidal-only approach. These results demonstrate
the significance of the envelope term in the modulation model in representing onset/offset content
as well as formant structure.

Table 3-1 further lists the average signal-to-noise ratios of the waveforms when the estimated
magnitudes are combined with the true phase of the original signal; recall that these represent
"upper limits" of waveform reconstructions due to use of the original phase potentially recovering
magnitude information lost due to limitations of the signal model. Overall, the waveform
reconstruction results in SNR of at least -11 dB. In informal listening, listeners (non-authors)
reported indistinguishable waveforms between the original and bootstrap and direct methods.
However, the sinusoidal-only method was described as substantially more "muffled" and "rough"
in relation to the original. These results are consistent with accurate magnitude modeling using
both the direct and bootstrapping methods. Waveform quality is presumably maintained by a
combination of this modeling and use of the phase of the original signal in waveform
reconstruction in the demodulation methods. Our results demonstrate empirically that the
relatively poorer estimates of spectrogram magnitudes using the sinusoidal methods cannot be
recovered using phase information.

In Figure 3-25 and Figure 3-26, we show results of speaker separation for a female-female (FF)
and female-male (FM) mixture with a male target, respectively. For the FF case, observe that
both the direct and exclusion methods can provide faithful reconstruction of the target speaker
and suppression of the harmonic structure of the interferer Relative to the direct method, observe
at time n = 750 that the exclusion method can provide more suppression of the harmonic
structure of the interferer, presumably due to exclusion in demodulating the envelope terms. In
the FM case, observe that both the direct and exclusion method provide less suppression of
interfering speakers at e.g., time n = 2200; this is likely caused by inaccurate carrier parameters
being used in demodulation such that harmonic structure of the interfering speaker is maintained.
In addition, the overall reconstruction of the target speaker is qualitatively worse than in the FF
case. An explanation for this performance difference across genders is that male speakers
generally have lower pitch than females. Low pitch values are further away from the GCT origin
such that there are fewer carrier terms for demodulation. Consistent with this explanation
observe quantitatively that SNR gains increase from the MM (-3 dB), MF (male target), MF
(female target), and FF cases (up to -6 dB).

As an oracle experiment, we also show in Table 3-3 results of combining demodulated estimates
with their corresponding true phase spectra (instead of the phase of the mixture signal); here,
observe that we can obtain substantially higher SNR values up to -8 dB due to the combined
effects of magnitude and phase in waveform reconstruction. Finally, in informal listening, (non-
author) listeners reported generally faithful reconstruction of target speakers with suppression,
though not complete removal, of interferers; specifically, listeners reported "weaker" (in
amplitude) and "muffled" interferers in the resulting estimates.

In relation to the reference method, the GCT does not appear to perform as well as the frame-
based sinusoidal-based reference system as shown in Table 3-3, with up to -3 dB poorer
performance (in the FF case). This effect may be due in part to the GCT's use of magnitude only
to obtain separation estimates as evidenced by the previously noted performance improvement
with addition of the true phase. Nonetheless observe that fusion of the GCT-based and sinusoidal-
based-based separation can result in up to -1 dB gain relative to the sinusoidal-based-based
system. These results provide evidence for complementary information provided by the GCT



signal representation in signal separation. As an example of improved separation, Figure 3-27
shows a mixture of two males as well as estimates from fusion and the reference sinusoidal
method. Observe at times -1.25e4 and -1.65e4 (in samples) that the fused estimates more
closely resembles the reference waveform of the target in reducing the periodic-like components
obtained from the sinewave system. A potential explanation of these gains may be attributed to
the GCT's use of temporal pitch dynamics in providing separability of speakers despite similar
pitch values.

As another quantitative metric, we compute in Table 3-2 root-mean-squared errors (RMSE)
between the estimated spectrograms themselves and the reference spectrograms for reference in
relation to potential application of magnitude-only representations (e.g., features in automatic
speech recognition). RMSE values are computed after scaling both the estimate the reference
spectrograms by their maximum values to account for overall scaling effects obtained from
overlap-add. We observe that the exclusion method provides gains over the direct method using
the GCT, consistent with the SNR results. RMSE values obtained for spectrograms recomputed
using the fused and sinusoidal-based estimated waveforms do not exhibit such a correspondence
in relation to their relative SNRs. We believe this discrepancy to reflect effects of recomputing
the spectrogram and effects of the mixture phase used in waveform reconstruction. In informal
listening, (non-author) listeners reported that the sinusoidal-based system does not result in
complete removal of interferers, similar to the GCT. One reported distinction is that sinusoidal-
based results in "whispered" interferers while the GCT results in interferers with lower amplitude.
In addition, the fused result in Figure 3-27 was reported to not exhibit interfering periodic
components consistent with the qualitative observations of the waveforms. The combined results
of analysis/synthesis and separation demonstrate that the GCT-based signal model can provide
good representations of speech and is a promising one for the co-channel speaker separation task.
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Figure 3-22. (a) Original spectrogramn of a female utterance; (b) Estimate from 2-D
sinusoidal-series fit using the bootstrapped carrier positions; (b) direct mapping
demodulation method; (c) bootstrapped carriers demodulation method; in (a), we denote
vertical and horizontal arrows as frequency and time slices, respectively.
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Figure 3-23. (a) Full spectral slices from original (red), sinusoids-series fit only (blue),
direct (green) and bootstrap (black) demodulation methods; (b) Local frequency region of
(a). Extracted at time 440 from Figure 3-22.
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Figure 3-25. (a) Spectrogram of mixture (FF) ("Why couldn't they have dumped him off",
"Anything wrong, Captain?"); (b) Original target spectrogram (utterance containing
"Why"); (c) Reconstruction from direct method; (d) reconstruction from exclusion.
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Figure 3-26. As in Figure 3-25 but a mixture of female ("Forty-seven states assign or
provide vehicles for employees") and male ("Another field had given him fame enough to
satisfy any egotist") with male target.
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Figure 3-27. (a) Mixture of two males ("They'll tow the line"
reference target waveform ("He drove essential"); (c)
representation; (d) fused estimate.

+ "He drove essential"); (b)
estimate from sinusoidal

Table 3-1. Average RMSE and SNRs for analysis/synthesis of spectrograms and standard
errors; here, "Sine - Direct" and "Sine - Boot" correspond to the 2-D sinusoidal series fit
using the direct and bootstrapped carrier positions.

Sine - Direct Sine - Boot Demod. - Direct Demod. - Boot
RMSE (Males) 1.80e-2 [7.28e-4] 1.77e-2 [7.29e-4] 1.17e-2 [6.34e-4] 1.06e-2 [6.12e-4]
RMSE (Females) 1.39e-2 [7.68e-4] 1.34e-2 [8.48e-4] 5.76e-3 [4.5le-4] 4.18e-3 [3.44e-4]
SNR (dB) (Males) 6.33 [0.27] 6.46 [0.27] 10.52 [0.30] 11.36 [0.33]
SNR (dB) (Females) 8.50 [0.35] 8.74 [0.34] 17.77 [0.60] 20.84 [0.59]

Table 3-2. Average RMSEs for speaker separation, standard errors [] on test set.

Direct Exclusion Fusion Sine-based
MM 2.66e-2 [1.06e-3] 2.62e-2 [1.16e-3] 1.62e-2 [6.85e-4] 1.61e-2 [6.38e-4]
FF 1.93e-2 [5.86e-4] 1.58e-2 [3.65e-4] 1.02e-2 [2.29e-4] 9.29e-3 [2.63e-4]
FM - Male 2.37e-2 [6.85e-4] 2.22e-2 [6.96e-4] 1.29e-2 [3.68e-4] 1.20e-2 [3.15e-4]
FM - Female 1.84e-2 [5.13e-4] 1.66e-2 [4.41e-4] 1.19e-2 [3.14e-4] 1.28e-2 [3.54e-4]

Table 3-3. Average SNRs (dB) for speaker separation (dB), standard errors [] on test set;
(T) denotes true phase results; here, "Sin-based" refers to frame-based sinusoidal-based
separation method.

Direct Exclusion Direct (T) Exclusion (T) Sine-based Fusion
MM 3.70 [0.14] 3.80 [0.15] 5.22 [0.17] 5.23 [0.18] 4.73 [0.13] 5.58 [0.13]
FF 4.86 [0.14] 6.31 [0.14] 8.02 [0.14] 8.53 [0.14] 9.18 [0.18] 8.81 [0.14]
FM - Male 4.69 [0.10] 4.91 [0.11] 5.59 [0.12] 5.97 [0.13] 6.81 [0.13] 7.34 [0.10]
FM - Female 5.06 [0.09] 5.83 [0.11] 8.33 [0.11] 8.27 [0.13] 6.32 [0.10] 17.36 [0.14]



3.6 Conclusions
This chapter has proposed a 2-D signal model of speech content in local time-frequency regions
of the narrowband spectrogram. In particular, a sinusoidal-series carrier as a function of pitch,
pitch dynamic, and noisy source information is modulated in time and frequency by a slowly-
varying envelope term reflecting formant/dynamic formant and onset/offset content.
Consequently, a transformed 2-D Grating Compression Transform space (GCT) exhibits
distributed copies of the 2-D Fourier transform of the envelope at both the GCT origin and at
positions corresponding to the carrier parameters. We have explored the properties and
limitations of the model through simulations on synthetic data. In addition, we have developed
algorithms that seek to exploit the distributive nature of replicas of envelope content in the GCT
based on demodulation and interpolation in local time-frequency regions of spectrograms for both
analysis/synthesis and co-channel speaker separation using prior pitch information. In
analysis/synthesis, our algorithms demonstrate that the signal model is capable of very accurately
representing speech content in recovering a variety of energy fluctuations observed in the
spectrogram. Results of co-channel speaker separation using the GCT-based methods alone
demonstrate that it is a promising one for this task in providing global SNR gains (relative to 0 dB
initial signal-to-signal ratios) up to -6 dB. When fused with a standard frame-based sinusoidal
method, gains in SNR are observed up to -1 dB providing evidence for complementary
information by the GCT representation for the separation task.
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Chapter 4

Wideband Models and a Taxonomy of
Speech-Signal Behavior

In Chapter 3, we developed speech-specific signal models for localized 2-D Fourier analysis of
the narrowband spectrogram [7], a representation referred to as the (narrowband) Grating
Compression Transform (NGCT). More generally, it is of interest to apply 2-D Fourier analysis
to time-frequency distributions that can be viewed as mixtures of both narrowband and wideband
spectrograms. Examples of such mixed-resolution distributions include the auditory, super-
resolution, and cone-kernel spectrograms [40][1]. Towards this end, we develop in this chapter
signal models for the counterpart wideband spectrogram in the context of the GCT (WGCT)
(Figure 4-1), thereby providing a more complete interpretation of speech signal behavior in both
the GCT framework and potentially other 2-D processing schemes and time-frequency
distributions.

GCT
Narrowband

Speech Waveform O U
> % % -- -N

0- WidebandE *** T" 2!9
TimeT

Time
Figure 4-1. Schematic of general 2-D processing framework with short-time analysis
followed by localized 2-D analysis for narrow (top) and wideband (bottom) representations.

In our development, we show that the WGCT is distinct from the NGCT in interpretation, thereby
motivating a novel taxonomy of speech-signal behavior in 2-D processing of speech. We also
show that the WGCT can be used in speech-signal processing via sinusoidal-series-based
demodulation as in Chapter 3 to motivate spectrogram analysis/synthesis methods. To assess the
ability of the model to represent speech content, we evaluate these methods for reconstruction of
wideband spectrograms and as an example application, build on previous work in Chapter 3 in
using the WGCT for co-channel speaker separation with prior pitch information. In this context,
we emphasize our focus on assessing the signal models' representations of speech rather than
developing a complete separation system. Chapter 6 describes efforts toward developing a



complete separation system.

This chapter is organized as follows. Section 4.1 reviews the GCT framework. Section 4.2
develops a 2-D speech-signal model for stationary voiced speech; Section 4.3 describes
extensions to non-stationary voiced speech while Section 4.4 discusses models for speech-based
noise and onset/offset content. Section 4.5 presents a taxonomy of speech-signal behavior in the
WGCT and NGCT. Section 4.6 describes approaches to spectrogram reconstruction and speaker
separation. Sections 4.7 and 4.8 present our results and conclusions, respectively. Section 4.9 is
an appendix for reference to derivations referenced in Section 4.2.

4.1 Framework
We first review the Grating Compression Transform (GCT) framework developed in Chapter 3.
Consider the short-time Fourier transform (STFT) of a speech signal y[n] using a window w [n]

Y(n, to) = m w[m - n]y[m]e-w". (4.1)

In Chapter 3, we considered w[n] with length (L) 2-3 times the pitch period P of voiced speech
present in y[n], resulting in a narrowband spectrogram. This window choice leads to harmonic
line structure oriented across frequency. For local time-frequency regions of I Y(n, W) I

IY(n, O)|iocai ~ w[n, o]H(n, o)E(n, w) (4.2)

where w[n, to] is the 2-D window, H(n, w) is the vocal tract formant envelope, and E(n, W) is a
2-D sinusoidal-series carrier dependent on pitch and pitch dynamic content. In the GCT domain,
the model results in distribution of replicas of the envelope (Figure 3-1). Similar behavior was
argued for unvoiced speech and onset/offset content.
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Figure 4-2. (a) Wideband spectrogram of real speech male utterance "needs" illustrating
analysis near the first formant (o ~ 0.05) (b) small A (red), large A (green) and an (c)
"edge" case (white); (d - f) WGCT representation of three regions; note off-axis terms in
(e); (d - f) computed for regions including time slices in (b); see discussion of simulations for
WGCT computation details.

This chapter considers w[n] with L < P, such that w[n] analyzes y[n] within a single period P
voiced speech [1]. This window choice leads to harmonic-like grating structure oriented across
time in a wideband spectrogram. A model for wideband spectrograms of voiced speech is
proposed in [1]

|Y(n,co)| = E[n]H(w) (4.3)

where E[n] is a time-dependent "energy" term and fl(to) is a "smoothed" version of the true
formant envelope. Figure 4-2 shows analysis of several local time-frequency regions of a
wideband spectrogram computed for voiced speech. We observe distinct behaviors in each
region and their corresponding WGCTs based on the proximity to the first formant.
Subsequently, we argue for a set of models with the general form of (4.3) to characterize these
behaviors.

4.2 Stationary Voiced Speech Modeling

4.2.1 Single-Formant Modeling
Consider a simple model of speech in which an impulse train

p[n] = XNk 6[n - kP] (4.4)

with periodicity P and Nk terms excites a single formant modeled as a decaying sinusoid

h[n] = e-"fn cos(wfn)u[n]. (4.5)

with corresponding Fourier transform

(a) Wideband Spectrogram (b) Time Slices (c) Composite



H(w) = s.5_f + ,.ef ) (4.6)af e, )&f af +e ( (4.6)

f, af, and of are the amplitude, decay rate (corresponding to formant bandwidth), and formant
frequency, respectively. We analyze the resulting signal

y[n] = k2=O h[n - kP] (4.7)

using the short-time Fourier transform (STFT) with w[n] of length L < P to satisfy the wideband
constraint.

Consider the filterbank view of the STFT such that at an analysis frequency o = of + A [1],

Y(n, o) = (y[n]e -j"n) *n w[n] (4.8)

Y(n, o) = (2Nk Oh[n - kP] e~1(c"f+An) *n w[n]. (4.9)

By linearity of convolution, a single term in the summation is

Y(n, o; k) = (h[n - kP]e~1("f+A)n) *n w[n] (4.10)

with corresponding Fourier transform

Y(o', o; k) = e-jkP(' -iO-f A)W(W') (afe + .e'f ) (4.11)
(af +ej(('-A) af +e j('-2Wf-A) *

n maps to o' through the Fourier transform and is distinct from w. Since W(w') is concentrated
near o' = 0 and nearly zero in magnitude far away from to' = 0 origin (i.e., at (o' = 2 Wf + A),

Y(to', o; k) ~ e 0kP ("+A)e-jrk 5PW() f ' .
a+ej(o -^) (4.12)
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Figure 4-3. (a) Fourier transform of impulse response (green) and window (red); (b) small A
case with majority of demodulated formant near origin is within window filter; modulated
formant at w' = 2wf + A excluded by window filter; (c) large A case with tail of formant
content within bandwidth of window filter; (' = 2&) + A component not shown.

We consider two limiting conditions of "small" or "large" values of A and derive modulation
representations in both cases (Figure 4-3).

Small A: Applying the inverse Fourier transform to (4.12),

Y(n,w;k)~

(0.5ff eikP(wf +A)) w[n] * (e-af(n-kP)u[n - kP]eiA(nkP)). (4.13)

For small A, e~inA fluctuates slowly in time, and we therefore approximate it as e-inA -

cos(A) + jsin(A). Furthermore, we assume that cos(A) dominates e-,A for small A and
jsin(A) = 0. We then have

Y(n, &); k) L y())eikP("f +A)e[n - kP] (4.14)

y(w) = 0.5f 1cos (w - wf) (4.15)

e[n - kP] = w[n] *n eaf(n~kP) u[n - kP]. (4.16)

In (4.15), we have rewritten cos(A) as cos(w - (of) since A = w - Of. Note that if A = 0,
(4.14) holds with equality with y(w) = O.5ff. Returning to the summation over k, we obtain

Y(n, co) ~ ZNk eJkP(/f+A)y(w)E[n - kP]. 4.7)

If e[n - kP] decays to zero within each period, the magnitude of the sum may be approximated
as the sum of the magnitudes, i.e.,



|Y(n, w)|iocai ~ w[n, t]y(oI)Ed[n]

EnI= Z ~l P -XS 21rlEd [n] = [n - kP] = Es #Cos (-n + ip 1) (4.19)

where y(w) is assumed to be non-negative for "small"-A e.g., 0 ; JAI < , and we have
2

rewritten Ed[n] as a sinusoidal series expansion. Here, we have also introduced a 2-D analysis
window w[n, o] to emphasize analysis in a local time-frequency region of the wideband
spectrogram.

Our derivation argues for a modulation model as in (4.3) with a sinusoidal series carrier Ed[n]
representing source periodicity and formant bandwidth/decay rate (Figure 4-2b) and envelope
y(co) representing frequency-dependent scaling of the formant peak in the spectral domain. It
can be shown from an alternative Fourier transform view of the STFT that one interpretation of
this scaling is smoothing of the true formant spectrum with the Fourier transform of the window:

y(w) ~til () = IW(ov) *, H(co)I. (4.20)

We refer the reader to Section 4.9 for a discussion of this derivation and illustrate subsequently
through simulations its limitations. Note that if the bandwidth of W(w) is substantially greater
than that of H(to), then the bandwidth of R (to) effectively becomes that of the window.

Since Ed[n] and y(w) are separable in (4.18), its 2-D Fourier transform (i.e., the WGCT) is

Y(v, 1) = W(u, 1) * [9 (f) (KS(v) + Z- 0.5#fle 1llu6 (o + (4.21)

where n and to map to v and 11, respectively, and ii(fi) (W(v,1)) is the Fourier transform of
R(to) (i.e., a 2-D window in the time-frequency space w[n, w]). i1(fl) is the WGCT
representation of the smoothed formant envelope in a local time-frequency region. Copies of
ij(11) are weighted by 81 coefficients (representing the bandwidth of the formant) along the v-axis
at multiples of 27r (representing the source periodicity). This product is further smoothed in v and
fl with the Fourier transform of the 2-D analysis window. Note that formant bandwidth along the
to-axis "lost" due to smoothing by the short-time analysis window is "recovered" in time and
represented in the carrier.

The present and subsequent formulation motivates a modulation/demodulation framework for
speech signal processing similar to Chapter 3. Since copies of r)(11) are distributed in the WGCT
space via the carriers, they may be demodulated to reconstruct the rj (fi) term at the WGCT origin
if this component is corrupted e.g. from an interfering signal.

Large A: For large A, the approximation in (4.14) does not hold. to = of + A is "far away" from
ov , and we alternatively assume that the frequency response of the formant is approximately a
single complex value y'(co) (i.e., a flat spectrum) (Figure 4-3). The frequency domain
interpretation of this from (4.11) is

Y(w', &); k) = y'(ov)(e-jkP(w'+w)W(v'). (4.22)

Inverting (4.22) and invoking the summation as in (4.17),

(4.18)



Y(n,w; k) = - (n - kP) *n w[n] =

N y' ()e-kp"w[n - kP] (4.23)

Since L < P, the summed terms do not overlap in time. In a local-time frequency region
analyzed with a 2-D window w[n, w], the magnitude of the sum can be rewritten as a sum of
magnitudes, i.e.,

|Y(n,"')|iocai = w[n, (]|y'(o)|E.[n] (4.24)

EW[n] = Nk w[n - kP] (4.25)

resulting again in a modulation model of the spectrogram with a source periodicity-dependent
carrier Ew [n] and an envelope I y'(o) I which we again interpret as ii o) from (4.20). A WGCT
representation analogous to (4.21) is given by (Figure 4-4)

Y(v, fl) = W(v, fi) *. [''(f) (KS(v) + X2 0.5fl'jeiP"5 (v t (426)

where r'(1l) is the Fourier transform of Iy'(&) I and fl't and 4' parameters of the sinusoidal series
representation of Ew [n]. While the WGCT domain contains copies of 1'(fi) reflecting smoothed
formant structure in local time-frequency regions as in the small A case, carrier positions and
corresponding gain terms reflect source periodicity only. Note that rj'(1l) are not constrained
along the fl-axis and are therefore schematized as ellipses oriented vertically in the GCT as in
Figure 4-4.

:1(b)
Frequency(tw) (a) *l 1'. l

( )

Time (r I) IuIIn
Figure 4-4. (a) Wideband spectrogram schematic illustrating analysis of a single formant in
distinct frequency regions (1) large A, (2) small A, (3), "in between" case; periodicity and
bandwidth-dependent carrier (blue, shaded), periodicity-dependent carrier (dotted lines)
and composite carrier; (b-d) WGCT of regions 1 - 3 with distinct modulated envelopes
delineated: small A - red, large A - yellow, "in between" - graded.

Composite Carrier: Our discussion thus far has described limiting cases of A modulation
models in time-frequency regions of wideband spectrograms. To account for values of A "in
between", we propose a "composite" carrier

Ec[n,w] = Ed[n] R [a] + Ew[n]R [w - wo] (4.27)



R[w = 1,0 < a < M (4.28)
0, otherwise

where M ranges from 0 to the full length Mfunl region in frequency, and wo is a shift in
frequency. A similar composite carrier can be obtained by interchanging Ew[n] and Ed[n].
Ec[n, w] may be modulated by fi(to) to invoke a modulation interpretation as in the limiting
cases. A generalized modulation model in local time-frequency regions is

|Y(n, c)|iocai = w[n, w]Fi(oi)(Ed[n]R[w] + E,[n]R[wo - wo]). (4.29)

The 2-D Fourier transform (WGCT) of (4.29) is (Figure 4-4)

KR,i 6 (v) +
Y(V, £) = W(V, f) *v,fl Zec(d,w) R,ifl) Z V i +27) (4.30)

where 1Rg(J) is the Fourier transform of M(o)R(o) (i = d) and H(o)R(o - wo) (i = w). KRj
and flR,i are the sinusoidal series coefficients of the two carrier types. The WGCT contains a
scaled sum of 77R,i(f) terms at the origin and carrier locations. If the bandwidth of 1R,(f)

denoted as o, are such that 0.5u, < , then their modulated copies will occupy distinct regions
along the v-axis (Figure 4-4). Note that this model does not impose constraints on the bandwidth
along the 1t-axis.

The WGCT also invokes a mapping of pitch fo information

27r
V0 = fo - (4.31)

fs

where f, is the sampling frequency of the waveform. If the time width of the local time-
frequency region is be 2-3 times the pitch period [1], the resulting the WGCT exhibits distinct

copies of the envelope at multiples of ; fo is inversely related to the number of terms in the
WGCT.

4.2.2 Multiple Formants
For multiple formants, we generalize (4.11) as the summation

Y(w',o ; k) =

W W') Z Nf ejkP(w'+)f +A) 0.5 + 0.5f (4.32)
f=1 ( ej('O'-a) af+e j( ~'-2 /

where Nf is the number of formants. Assuming that the og are well-separated in frequency, we
approximate Y(o', (; k) as being dominated by a single formant in local frequency regions.
Consequently, identical arguments can be applied as in the previous sections to arrive at
modulation models for individual formants. This invokes a sum-of-magnitudes approximation
for the magnitude

|Y(n, t)|oca I w[n, wl Eo=1 Ec[n, j; f]H(w) (4.33)



where Ec [n, t; f] and FIf (o) are formant specific. This model interprets local regions of the
wideband spectrogram magnitude as a sum of modulation products. The WGCT Y(v, 11) is a
summation of terms corresponding to (4.33) for each formant

Y(vf) =

Nf KR,i,f 6(v) + (4.34)
W(V,) *ufl 2

f1l )i(d, ,w) R,i; f) Ns 0 
S f (v +

( =1 " flR,i,f 05(- p)

where 1Ri(f4; f), KR,i,f, and #RJf are now formant-dependent versions of those in (4.30). We

expect this approximation to be best for frequency regions for when A is either "small" or "large"
(i.e., very near or very far from the formant peak) e.g., co - A < o < Of + A, analogous to the
single-formant case. Furthermore, at frequency regions far away from formant frequencies, the
summation implies dominance by a "large A" model (4.24) corresponding to a single formant.
Nonetheless, if formants interact within a local frequency region, the model can be expected to
less accurate. In our subsequent analyses, we show the effects of such interactions.

4.2.3 Simulations
Single Formant: Herein we illustrate properties of the carrier models proposed for the
previously described small and large A conditions. We synthesize a decaying sinusoid h'[n]S
with (of = 0.17 corresponding to a periodicity of 20 samples, f = 1, and af = 0.01 (4.5); h'[n]

is excited with a pure impulse train p'[n] with periodicity P = 77 to generate y'[n]. Signals are
synthesized at 16 kHz with resulting pitch (formant) frequency of 210 Hz (800 Hz). Wideband
spectrograms are computed using a Hamming window w[n] with length L = 40 = 2.5-ms
Hamming; to account for an extremal case of a 350-Hz pitch, L can be chosen in general to be

less than ~ = 2.9 ms. A single-sample frame rate and 2048-point discrete Fourier transform
350

(DFT) is applied to both y'[n] and p'[n] to obtain IY'(n, o)I and IP'(n, o)1. WGCT analysis
was performed using region sizes of 37.5 ms by 500 Hz extracted with a 2-D Hamming window
followed by a 512-by-512-point 2-D DFT. Analogous to the choice of L, 2-3 times the lowest
pitch period of 60 Hz constrains the time width to -33 to 50-ms. We refer the reader to our
subsequent discussion to motivate the choice of frequency widths.

For "small-A", we extract time slices from IY(n, o)I at O = of and o = Of + A with A =
0.0313w (corresponding to 250 Hz). w = Of (A = 0) represents the idealized carrier in the

modulation model as discussed in (4.14); A = 0.0313w represents a "small-A" condition. Time
slices are normalized to have unity amplitude and shown in Figure 4-5b. We plot absolute
differences between the slices and compute the root-mean-squared error (RMSE) across time.
Consistent with the model, both time slices resemble decaying exponentials smoothed by the
window with the A = 0.0313w case having RMSE of -0.09 relative to the A = 0 case. This
discrepancy is reflects limitations of the small- A assumptions used in modeling.

For "large-A", Figure 4-5c shows a time slice extracted at &) = 0.57 (i.e., "far away" from aof).
We also plot a time slice IP'(n, w)I corresponding to periodically summed windows, i.e., the
idealized carrier/excitation component E, [n]. The w = 0.5 time slice closely matches E, [n]
with RMSE of -0.05.

5 We delineate h'[n] (and other signals p'[n], etc.) as the simulated versions of their corresponding general
forms using a specific set of parameters.



In a second set of simulations, we explore properties of the smoothed formant interpretation of
the envelope term of the modulation model (4.20). We replicate a time slice |Y(n, w = Of)I
across all frequencies to generate an idealized 2-D carrier E'(n, w); we also compute the time
average of all spectral slices in IY(n, w)| and replicate this across time to obtain an
idealized/reference smoothed envelope term F1 (n, to) ~ Hr(n, W). Subsequently, we compute

E'e~flj) = (n,w)I If( jv Y'(n,('OI
E(n, ) = ), H(n, o) = E(n, (4.35)

E'e (n, to) and He(n, w) denote estimates of the carrier and envelope components assuming the
idealized versions of their counterparts in the factorization (4.3) (i.e., the idealized envelope
Hr(n, w) and idealized carrier E'(n, to)), respectively. Figure 4-6 shows E'e(n, w) and time
slices corresponding to the decaying and window-based carriers in regions near and far from the
of respectively, as can be expected since Hr(n, w) varies with frequency only. In addition,
H, (n, w) is reasonably matched to Hr(n, w) in frequency regions near of though not for o away
from of. This is consistent with our use of the exponential decaying carrier in computing
H,(n, w). In addition, He(n, w) exhibits temporal fluctuations in energy at of. This effect
reflects the fact that the assumed envelope H, (n, o) best matches in time regions away from
excitation impulses (see Appendix I). Quantitatively, normalized spectral slices of He (n, o)
exhibit an RMSE relative to Hr (n, o) up to -0.09.

(a) Single Formant w/ Pise Train (b) Puse Train Only
1 1

0.5 0.5

0 0500 1000 1500 500 1000 1500
Time (n) (c) = o + A, RMSE = 0.085191 Time (n)

5% a, - v2, RMSE a.O

00 200 400 600 800 1000 1200 1400 1600
Time (n)

Figure 4-5. Wideband spectrogram (plotted on linear scale) of (a) decaying sinusoid excited
with a pure impulse train and (b) pure impulse train; note that a time slice of (b)
corresponds to periodically summed copies of the short-time analysis window; (c) time slice
of (a) located at the formant peak (red) and for a small A value away from the peak (blue);
absolute difference (green) between the two curves; (d) as in (c) but for the idealized pure
impulse train time slice (red) and actual time slice located "far away" from the formant
peak (blue).



(C) E',(na,), E,(n,0.5x)

I Me In)
(d) Hr(n)

500 1000 1500 0 500
Time (n) Time (n)

(e) H,(no) (f) H,(570,co), H,(515,4)

-RMSE(570) = 0.03
-RMSE(515) - 0.09
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Figure 4-6. (a) Y(n, fo); (b) E'e(n, W); (c) time slices of (b); (d) Hr(n, &); (e) He(n, (A); (f)
spectral slices of (d) and (e); RMSEs in (f) computed between normalized spectral slices of
(e) and the idealized term in (d); in (f), RMSE(570) denotes extraction of a spectral slice at
time 570.

In a final set of simulations, we assess model properties in frequency regions in between the
limiting cases of "small" and "large" A. Figure 4-7a shows a local region of E'(n, w) (4.35)
(Figure 4-6b) centered at w = 0.23r in which two carriers appear to interact within the same
local region. The corresponding WGCT contains components off the horizontal axis, violating
the assumption of a strictly time-dependent carrier (Ed [n], Ew [n]). From (4.27), we set each half
of the region in frequency to Ed [n] and Ew [n]. Observe that the resulting WGCT of this signal
does indeed exhibit off-axis similar to those in Figure 4-2f. In Figure 4-7c, we show the result of
summing Ew [n] and E[n] without applying R[c]; the resulting WGCT does not exhibit off-axis
terms, indicating that the displacement effects of R[&)] corresponding to phase terms in the
WGCT are crucial in modeling this behavior. This can understood from (4.30) by noting that the
Fourier transform of Ec [n, w] has the same form but with ,R, (W) replaced by the Fourier
transforms of R [w] and R [w - wo], thereby invoking dependence along fl in the WGCT domain.

(b) E',(np)(a) E'(n)
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Figure 4-7. (a) Local region from E'e(n, w) centered at -0.237r; (b) "composite" carrier;
(c) carrier obtained from direct summation; (d-f) WGCT of (a-c), respectively with ft = 0
(line) denoted; plotted on linear scales.

Multiple Formants: Herein we explore properties of the sum-of-modulation-products model
(4.33) for multiple formants. In addition, we implicitly investigate effects of downsampling the
spectrogram on the model, as is typically done in implementation. Furthermore, we motivate a
choice of region size in WGCT analysis along the frequency dimension.

A synthetic vowel generated using a pure impulse train p[n] with a 250-Hz pitch is filtered with a
stationary formant structure with frequencies (bandwidths) 669, 2349, 2972, 3500 Hz (65, 90,
156, 200 Hz) to generate y[n] (i.e., a female /ae/ vowel, [28]). Spectrograms are computed as in

the previous section though a frame rate of 10 samples (i.e., ). In addition, we apply a high-pass
filter to the spectrogram and aim to recover localized regions using demodulation with
bootstrapping as alluded to in Section 4.2.1. For each point along the w-axis, we extract a region
of the filtered spectrogram of time length 37.5 ms and vary the frequency width to obtain local
regions (Figure 4-8d). Using demodulation as in Chapter 3, we obtain an estimate of the original
local region; we refer the reader to Section 4.6.1 for details of the method and focus here on the
results. We compute the root-mean-squared error (RMSE) between the estimate and original 2-D
region extracted after both are scaled to have maximum value of unity for comparison purposes.
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Figure 4-8. (a) Spectrogram of vowel with local region highlighted (white); (b) high-pass
filtered version of (a) for use in reconstruction; (c) original local region; (d) estimate of (d)
using demodulation; all figures plotted on linear scale.
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Figure 4-9. (a) RMSE as a function of frequency widths and frequency points analyzed; (b)
RMSE for frequency center points corresponding to formant frequencies as well as away
from formant frequencies.

Figure 4-9a shows results across all frequency center points and widths (df) while Figure 4-9b
shows results of analysis at select center frequencies. Despite the presence of multiple formants,
RMSEs for reconstructions centered at the formant frequencies do not exceed -0.15 for frequency
widths ranging from zero to 0.1r corresponding to -800 Hz; qualitatively, this corresponds to a
reasonable estimates of the original region as shown in Figure 4-8d. RMSE values generally
increase up to a local maximum for larger widths followed by a modest decrease. At frequency
regions "far away" from formant peaks, e.g., at o = 0.8nr, reconstructions also follow this trend
though substantially less growth in RMSE beyond frequency widths of .1ir; this is due to the

(b) HPF lY(n, a)l



absence of interacting formant structure in these frequency regions. Conversely, at o) = 0.21r, the
slope of the RMSE is sharper than for the individual and w = 0.8r case, reflecting effects of
formant interactions (here, Fl and F2).

4.3 Extensions to Non-stationary Voiced Speech
4.3.1 Dynamic Formants
Modeling: As discussed in Section 4.9, a Fourier transform view of the wideband spectrograms
argues for a similar modulation model to that presented in Section 4.2.1 that includes formant
dynamics. In the time-frequency space, we view dynamic formant content as a rotated rectangle
in the time-frequency space such that the 2-D Fourier transform is the rotation of the 2-D Fourier
transform of a rectangle from image processing principles (Figure 4-18) (Chapter 3). While the
derived model is posed under relatively restrictive conditions in relation to time segments away
from excitation impulse onsets, herein we illustrate with a simple example that the model can
nonetheless provide a reasonable interpretation of dynamic formants.

(a) Diphthong (b) Local Region

1

U_ u. 0.28
0 100 200 300 220 240 260

Time (n) Time (n)
(c) IWGCTI - Org, 0.24498 (d) IWGCTI - Demod, 0.23374

1 1

( 0

Figure 4-10. (a) Wideband spectrogram of diphthong with local region (white); (b) local
region of (a); (c) GCT of (b) with rotated (white line) envelope structure near origin; arrows
denote demodulation of carrier terms down to DC; (d) WGCT of demodulated version of (c)
with comparable rotated components to match that in (c). In (c) and (d), DC value is
removed for illustrative purposes; in (d), display limited to near-DC region due to presence
of cross terms in demodulation.

Dynamic Formant Model Simulations: We synthesize a 200-ms diphthong with start-to-end
formant frequencies (bandwidths) of 669, 2349, 2972, 4000 Hz (65, 90, 156, 200 Hz) to 437
2761, 3372, 4000 Hz (38, 66, 171, 200 Hz). The source signal is a pure impulse train with 200-
Hz pitch. The wideband spectrogram and WGCTs are computed as in the previous section.

Figure 4-oa-b shows a local region near the increasing second formant. Figure 4-D0c shows the
corresponding WGCT near the first carrier position; for display purposes, DC values at both the
origin and carriers have been removed. At these locations, we observe rotated components



corresponding to the local envelope structure present in Figure 4-10b; the rotation of these
components can be quantified by measuring the angle of the near-DC peaks relative to the fl-axis
of -0.24 radians.

As noted in Section 4.2.1, demodulation of envelope content from carrier positions may be used
to recover near-DC terms in the WGCT. Figure 4-10d shows an example of demodulating the
carrier components in Figure 4-10c to DC. Since in reconstruction we further remove any
resulting cross terms by low-pass filtering (see Section 4.6), we restrict our display to the near-
DC regions. A set of rotated components are obtained at DC with angle -0.23 radians to match
those at DC in Figure 4-10c. These results are consistent with a generalized 2-D envelope
H(n, w) as argued in Appendix I in relation to the modulation model.

4.3.2 Time-varying Pitch
Model: Time-varying models of pitch have been explored by a number of researchers such as in
[41]. In the short-time spectrum, the behavior with time-varying impulse has been described
qualitatively as "blurring" (i.e., widening) of harmonic peaks near the "average" pitch; this effect
may be interpreted as multiple peaks in the spectrum corresponding to a Bessell function
expansion [1]. In our present development, we impose the constraint that local time-frequency
regions have time widths such that pitch values are approximately constant. Subsequently, we
quantitatively assess the effect this has on a range of pitch variations.

(a) Changing Pulse Train (b) WGCT (c) RMSE vs. Rate
1 1 -F 0.5 -Direct

-WGCT -Boot
-Direct Lu 0.4

90.5 0.5 -- soot 0.~20.3

0. 0.2

0L0 50 100 150 200 0.5 1 0 0.5 1
Time (n) O/X Rate (Hz I ms)

(d) Recon: Map= 0.53515, Pick -0.15968

0
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Time (n)

Figure 4-11. (a) Wideband spectrogram of changing pitch with time segment (37.5 ms)
denoted (white); (b) WGCT of full time slice (maroon) and time segment of (a) (black);
peaks obtained in direct mapping (blue) and bootstrapping (green); (c) RMSE of
reconstructions using direct versus bootstrapping methods; (d) reconstruction of 1 Hz/ms
case with truth (red), direct (blue), and bootstrapping (green) denoted.

Time-varying Pitch Simulations: We synthesis impulse trains of duration 200 ms with linearly
increasing pitch (varied fro mO to 1 Hz/ms) with starting pitch value of 175 Hz. In analysis, we
compute the wideband spectrogram and attempt to resynthesize a full time slice from time
segments of size 37.5 ms using 1-D WGCT analysis (Figure 4-11). We extract "peak" locations
in the WGCT to resynthesize a sinusoidal series. Peak locations are determined using either 1)
the direct pitch information mapping of (4.31) or 2) bootstrapping of the peak locations (Figure
4-1 1b). In the former method, the pitch value defined at the center of the time segment is used; in



the latter, the mapped locations are reassigned using a 1-D multi-peak picker applied to the
WGCT (see Section 4.6 and Chapter 3).

The resulting WGCT shows that the direct mapping can result in "peak" locations that appear
harmonically related but deviate from the actual WGCT peaks (Figure 4-1 1b). As an extremal
example of the variation in peak location with time-varying pitch, Figure 4-11 b shows a GCT
computed for the full time slice; we observe two peaks with substantially widened bandwidths
consistent with the previously described Bessel-like behavior. We compute the root-mean-
squared error (RMSE) between normalized estimates and true time slices. Figure 4-1 ic shows
that RMSE increases dramatically using the direct method for rates > -0.1 Hz/ms in contrast to
the bootstrapping technique. At a rate of 1 Hz/ms, bootstrapping (RMSE = -0.16) maintains the
aperiodicity of the signal while the direct mapping (RMSE = -0.54) deviates substantially
motivates a bootstrapping approach to obtain carrier locations that may not correspond exactly to
the pitch mapping of (4.31).

4.4 Noise and Onsets/Offsets Models
4.4.1 Noise
Model: We consider now modeling of noisy signals (e.g., fricatives) in the WGCT. The
analytical form of the WGCT model of noise is identical to that presented for the Narrowband
GCT (NGCT), and we refer the reader to Chapter 3 for more details while focusing on empirical
behavior of noise in the WGCT in this section.

(a) Spectrogram of White Noise (b) Single Region
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Figure 4-12. (a) Wideband spectrogram of white noise; (b) WGCT of a single region
(white); (c) ideal average power spectrum; (d) estimated average power spectrum with
RMSE computed for between normalized ideal power spectral density and estimate.

A zero-mean independent and identically distributed (i.i.d.) Gaussian process w[t] with standard
deviation a can be analyzed with a wideband short-time Fourier transform magnitude w[n, o].
We model w[n, o] as arising from a 2-D random process under assumptions of i.i.d. time-
frequency units with Rayleigh distribution. The (average) 2-D power spectrum of w[n, o] is then
from Chapter 3



Sww,GCT(V, a) =

2 - i 'U 2 + ar o,(V , a) * V 'fl |W (V , n) |2 (4 .3 6 )

2 2 p=r "U2zI (, fl) 12 +4-7 a2p

p = ff .;)I W(V, fl) 12 dud fl (4.37)

where W(v, fl) is the 2-D Fourier transform of the 2-D window used to extract localized regions
of w[n, o].

To obtain an instantaneous model, we invoked in Chapter 3 the Karhunen-Loeve expansion under
the assumption of distinct frequency bands of the filterbank view of the 2-D Fourier transform
[1]. Specifically, a sum of arbitrary sinusoids on a DC pedestal was viewed as the carrier
component in the modulation model of (4.29) (and corresponding WGCT):

IY(n, o)I = w[n, o] f[n, o]E[n, o] (4.38)

E(n,o) = K + I N acos(#k[n,(o]) (4.39)

pk[n, w] = 12(nCOSO + wsinO) + Vk (4.40)

Y(v, fl) = W(v, 0)*, Nc K± (v,D) + (4.41)
, lk=10.5ar?(V D ecos8,D f D+ esin 0))

with Nc as the number of carriers, 2k is the spatial frequency of the 2-D sinusoid, 6 its
orientation, kp its phase term, and r (v, f2) is the 2-D Fourier transform of R[n, o]. Here, we
have where we have allowed for a 2-D envelope H[n, (o] as in the time-varying formant
condition. As in the voiced case, this model argues for a distribution of envelope content in the
WGCT space at carrier locations (see Figure 4-15f).
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Figure 4-13. (a) Original spectrogram of noise-excited vowel; (b) low-pass filtered version of
(a) resulting in envelope term; (c) reconstruction after high-pass filtering and
demodulation; RMSE computed between (c) and (a); (d) low-pass filtered version of (c)
indicating recovery of low-pass envelope term in (b); RMSE computed between (d) and (b).

Simulations: Herein we compute the empirical 2-D power spectra of white noise in wideband
spectrograms for comparison to the proposed model. Figure 4-12a shows a wideband
spectrogram computed for w[t] with standard deviation o = 1. WGCT analysis was performed
using the parameters described previously for vowels. Figure 4-12d illustrates the power
spectrum obtained from averaging all regions analyzed. While the model captures the dominance
of the near-DC region of the WGCT, it fails to capture substantial 2-D spectral shaping effects.
Nonetheless, computing the root-mean-squared error (RMSE) between the normalized (i.e.,
normalized to have maximum value of 1) ideal power spectral density and estimated power
spectral density results in an RMSE of -0.001, indicating the dominance of the near-DC term.
Figure 4-12b shows WGCT analysis results for a single region, consistent with the averaged
spectrum in Figure 4-12d. The WGCT has a substantial component along the u-axis due to
correlation across the frequency axis (a) in the wideband spectrogram such that we observe
vertical striations (Figure 4-12a) across time. Specifically, the short-time spectrum is
substantially smeared across o due to the relatively short length of the window (and therefore
wide bandwidth in the spectrum). This behavior is the "dual" of the narrowband GCT that
exhibited components along the fl-axis due to temporal correlation effects of processing noise.

In a second set of simulations, we aim to assess the extent to which (4.38) can represent speech-
based noise. We compute the wideband spectrogram of a vowel with formant structure as in the
previous sections but excited with Gaussian white noise. Next, we adopt the framework of the
the simulations for multiple formants in removing DC components in the WGCT with the aim of
approximately reconstructing them through demodulation (Section 4.7.2). Figure 4-13 shows
reconstruction results and low-pass filtering of the original and reconstruction. Observe that the
reconstruction results in recovery of the low-pass envelope to match that of the original
spectrogram; this is consistent with the demodulation process recovering the near-DC terms of
the WGCT from its distributed copies due to the carrier.

(a) Org.



4.4.2 Onsets/Offsets
Model: Similar to the noise case, herein we briefly describe onset/offset content observed in
wideband spectrograms and similar to that observed for the narrowband case in Chapter 3. An
isolated impulse i[n] = 6[n - No] located at No can be modeled as a downsampled short-time
analysis window w[n] in the spectrogram domain (denoted as I [n, o])

I[no] = w[No - nN] (4.42)

where N is the frame rate of the STFT. The GCT is

I(V, 1) = W(v, n) *, W,* (N) ejNo (4.43)

where *vn denotes convolution in the GCT domain and W(v, fl) is the 2-D Fourier transform of
a 2-D window w[n, o] used to extract a localized time-frequency region. As in Chapter 3, we
view I(v, fl) as only a portion of an onset/offset envelope corresponding to a voicing and/or noise
onset/offset through the model of (3.47). As with formant envelopes, we impose a bandlimited
constraint on I(v, fl) in the context of modulation (4.30).

Wideband onsets will presumably have a wider bandwidth in the GCT domain than in the
narrowband due to the sharper representation of temporally oriented component. As a proxy for
bandwidth estimation, we consider that of I(v, 11). Specifically, wideband parameters are a 2.5-
ms (L = 40) short-time analysis window and frame rate of 0.625 ms. This results in the
downsampled Hamming window mainlobe W* Q) width of (T 4 = 0.8 (Chapter 3) in
contrast, a 32-ms window and 1-ms frame rate in the narrowband case results in a mainlobe width

of 87) 25 = 0.39067.
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Figure 4-14. (a) Spectrogram of voicing and noise onset; (b) reconstruction of (a); (c) low-
pass filtered version of (a) demonstrating onset/offset envelopes; as in (c) but for the
reconstruction in (b); associated RMSEs computed after normalization in all cases; log
spectrograms plotted to emphasize widening effects.

Simulations: Figure 4-14 shows results of synthesizing and reconstructing voicing and noise
onset/offsets; reconstruction was performed using the demodulation technique described in
Chapter 3 and in the subsequent Section 4.6.1. The reconstruction in Figure 4-14b exhibits
widening of the onsets as may be expected from the bandlimited nature of the analysis/synthesis
method. Nonetheless, this widening is consistent with the envelope obtained in low-pass filtering
the original signal in Figure 4-14c and as can be shown in filtering the reconstruction in Figure
4-14d.

4.5 A Taxonomy of Speech Signal Behavior in the GCT
Our discussions motivated a modulation view of the wideband spectrogramn. Specifically, in
voiced regions, the wideband spectrogram can be viewed as summation of modulation
components, where each component corresponds to a formant. A carrier Ec [n, 0)] is dependent
on source periodicity and (under certain conditions) formant bandwidth and is modulated by a
smoothed (single) formant or envelope | Fif(no, w))|. Noise and onsets/offsets are viewed in this
framework as carrier and envelope components, respectively.

(8) Origina Spectrogram



)(c) (e)

Figure 4-15. Narrow (top) and wideband (bottom) representations of: (a, b) stationary
formant and pitch, (c, d) stationary pitch and dynamic formant, and (e, f) noise content.
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Figure 4-16. Narrow (top) and wideband (bottom) representations of: (a, b) dynamic pitch
and stationary formant, (c, d) dynamic pitch and dynamic formant, and (e, f) onset/offset
content.

This signal model has some similarity to that proposed for narrowband spectrograms in Chapter
3, and in subsequent sections, we assess its ability to represent speech content using algorithms
similar to those used in Chapter 3. Nonetheless, there important distinctions exist in the form
and interpretation of the two models, and in Figure 4-15 - Figure 4-16 we compare the mapping
of changing/stationary, pitch/formant, and noise and onset/offset content for both representations.

For voiced speech, stationary pitch mappings in the NGCT and WGCT are "duals" of each other
along the f1 (narrow) and v (wide) axes, as schematized in Figure 15a-b. This mapping
distinction is preserved even when formant dynamics are introduced (Figure 4-15c-d). In
contrast, pitch dynamics invokes a rotation of components in the NGCT while invoking widening
of the formant content along the v-axis in the WGCT due to the presence of widened harmonic
content of the carrier as schematized in Figure 16a-d. An additional narrowband/wideband
"duality" is observed in mapping noise to the GCT domain with components along the fl
(narrow) and v (wide) axes (i.e., v = 0 and fi = 0), respectively (Figure 15e-f. Finally, the

(a)



WGCT exhibits greater bandwidth of onset/offset content relative to the NGCT due to differences
in short-time analysis resolution (Figure 16e-f).

Table 4-1 presents a taxonomy of speech signal behavior as represented in the
narrowband/wideband models. We denote H(n, o) as the formant structure, g(.) as a general
function, and wc as the center frequency of the local region analyzed. Several distinctions
include the summation of (WGCT) vs. singular modulation products (NGCT) and single (NGCT)
vs. multiple carrier types (WGCT); in addition, carriers have distinct dependencies on source

periodicity fo (NGCT, WGCT), pitch dynamics dfo (NGCT), formant bandwidth af (WGCT),
and oc. "Dual" behavior exists in pitch mappings between the two GCTs; specifically, high pitch
values results in low (i.e., near GCT origin) frequency components in the NGCT and high
frequency components in the WGCT. This effect also results in the difference in number N, of
harmonic terms in the GCT as they relate to pitch. While noise is viewed as a carrier term in
modulation in both representations, its localization is distinct between the two as previously
noted. Finally, onsets/offsets are interpreted as envelope terms in both cases though with
differences in bandwidth va along the u-axis.

Table 4-1. Comparison of signal model interpretations for narrow- and wideband-based
Grating Compression Transforms.

Interpretation/GCT Narrowband Wideband
Local Model Y(n, eo) Y(n, o) = 1 i

1 (n, )Ec(n, w)
= H(n, a)E(n,w) f

Envelope (vowels) H(n, o) fff(o, n; o)

Hf (to, n) * W(w)
Carrier (vowels) dfo Ec (n, o; f, fo, af, oc)E (n, to; fo, -- , toc) a 0

dt = g (Ed (n), E,(n), R (w))

fo mapping DOv 1 I
0  Po

fo N Np c fo N oc
fo

Noise Along v = 0; carrier Along f. = 0; carrier
Onsets/Offsets va = 0.391r Va = 0.8r

4.6 Spectrogram Analysis/Synthesis and Co-channel Speaker
Separation
Herein we describe approaches to test the proposed model's ability to represent speech content
through spectrogram analysis/synthesis and co-channel speaker separation. As these methods are
generally the same algorithmically to those in Chapter 3 and [21], we refer the reader to those
works for details and focus here on the general framework and distinctions.
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Figure 4-17. (a) Local time-frequency region with carrier (orange) and envelope (shaded)
components; (b) corresponding WGCT with candidate peaks from peak-picking ('+') and
reassignment of directly mapped carrier locations to candidate peaks; 'x' denotes removal
of near-DC term; (c) demodulation of components located at carrier locations obtained
from direct mapping for reconstruction; (d) as in (c) but using reassigned carrier locations
(bootstrapping).

4.6.1 Analysis/Synthesis
In the proposed signal model, the WGCT domain consists of envelope content near the origin and
at carrier locations (Figure 3-12, Figure 4-17) due to sinusoidal-series-based modulation. As a
framework for reconstruction, we aim to approximately recover the near-DC terms in the GCT
using their modulated version at carrier locations using sinusoidal demodulation [21] (Chapter 3)
(Figure 4-17). Synthesized carriers are multiplied by the local region followed by low-pass
filtering to invoke the bandlimited constraint along the u-axis of the envelope terms in the GCT
domain (4.30). Demodulation is done locally across time-frequency regions via a least-squared-
error fitting method. The reconstructed spectrogram is combined with the phase of the original
signal to estimate a waveform using overlap-add. This waveform estimate represents an "upper
limit" of reconstruction due to inclusion of the phase of the original signal. Finally, as a reference
approach, we apply fitting with a sinusoidal series (i.e., without the envelope) as was done in
Section 3.3 using known carrier locations.

To obtain carrier parameters for voiced speech, we use the pitch mapping (4.31) in conjunction
with prior pitch information. In contrast to the narrowband model, a direct mapping forces all
carriers to be located on the v-axis. For unvoiced speech and in the bootstrapping method to be
subsequently discussed, peak-picking is done using a multi-peak picker similar to that of Chapter
3. The GCT magnitude is analyzed by a series of binary masks to extract peak locations based on
a point's neighbors and amplitude thresholding.

As described in Chapter 3, carrier assignments for demodulation are made for voiced speech
using a direct method with mapped locations (for voiced speech). In the bootstrapping method,
directly mapped carrier locations are reassigned to those obtained from peak-picking using a
minimal distance criterion in an iterative algorithm (see Section 3.2). Noise carriers are assigned
based on peak-picking in both direct and bootstrapping approaches.

0



4.6.2 Co-channel Speaker Separation
As mentioned in the previous section, one motivation for analysis/synthesis with recovering the
near-DC terms from their modulated versions is the separation (or removal) of interfering
speakers. Specifically, we assume according to our model that near-DC terms of multiple
speakers overlap, while carrier terms often do not, and that recovery of the (uncorrupted) DC
region must be consistent with modulation of the carriers.

WGCT Approach: In our WGCT-based approach, similar but not identical to the narrowband
GCT (NGCT) approach, we apply least-squared-error demodulation using the sum of two
modulation models to fit local time-frequency regions of the mixture spectrogram. As in Chapter
3 and [21], this framework utilizes a sum-of-magnitudes approximation to the mixture
spectrogram. Diagonal loading of the resulting least-squares matrix was performing using a
threshold value obtained from a held-out development set. Carrier parameters are obtained as in
the single-speaker case using direct mapping and peak-picking. Permutations of mixture voicing
conditions are used to assign carriers to distinct speakers for demodulation (Chapter 3). In the
voiced-on-voiced case, the pitch mapping of (4.31) is used to obtain carrier positions that are used
directly or as reference values for bootstrapping/reassignment as in the single-speaker case using
candidates from the peak-picker. In the voiced-on-unvoiced case, the direct pitch mapping is
used to obtain the voiced speaker's carriers while the unvoiced speaker is assigned to carrier
locations from peak-picking. In bootstrapping, the voiced speaker's carriers are first reassigned
while the remaining candidate carrier locations from peak-picking are assigned to the unvoiced
speaker. In the unvoiced-on-unvoiced case, carrier positions from peak-picking are used to fit the
local region; the resulting estimate is halved and assigned to both speakers. A distinction of the
WGCT approach from the NGCT is that we apply bootstrapping of the carrier positions as an
alternative method to the direct approach instead of the exclusion/re-estimation method described
in Chapter 3. Finally, as in Chapter 3, we use for a reference a sinusoidal-based separation
system that operates on a frame-by-frame basis as a reference.
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Figure 4-18. (a) Local region of wideband spectrogram for voiced speaker1 (red lines,
shaded blue) and voiced speaker2 (purple lines, shaded yellow) mixture; (b) corresponding
WGCT with removal of near-DC terms and demodulation to extract speaker1; (c) voiced
speaker1 (red lines, blue shaded) and unvoiced speaker2 (black squares, yellow shaded)
mixture; (d) WGCT of (c) indicating removal of near-DC terms and demodulation to
recover speaker2. Demodulation in (b) and (d) are illustrated for the direct approach
though this is done similarly in bootstrapping with reassigned carrier positions.

Fusion Methods: From Section 4.5, recall that the number of harmonic components in the GCT
depends on the short-time analysis window. For instance, male speakers with low pitch exhibit
fewer terms in the NGCT than females while the opposite is true for WGCT; this effect was
suggested in Chapter 3 as contributing to differences in performance in both analysis/synthesis
and separation. It is conceivable that afusion of separation estimates from both the NGCT and
WGCT can lead to better overall estimates. We consider a simple fusion method using a
weighted sum (here, 0 a 1)

,fused[n] = a-wide [n] + (1 - a) narrow[n]. (4.44)

Finally, as was done in Chapter 3, we fuse both the narrow and wideband methods with the
baseline sinusoidal-based separation system with two weighting parameters a and P (0 a < 1,
0 f 5 1)

,used [n] = a2wide [n] + f2narrow [n] + (1 - a - 1)j2sB [n]. (4.45)

4.7 Evaluation

4.7.1 Data Set
In spectrogram analysis/synthesis and speaker separation, we use data from TIMIT identical to
that in Chapter 3. For analysis/synthesis, 10 males and 10 females speaking 2 distinct utterances
are used for a total of 40 examples. In separation, the development set consists of 5 male-male
(MM), female-male (FM), and female-female (FF) mixtures while the test set consists of 24 male-
male (MM), 24 female-female (FF), and 64 female-male (FM) mixtures, all mixed at 0 dB overall
signal-to-signal ratio. The selected pairs cover a large range of overlapping voiced and unvoiced
conditions, including crossing pitch tracks. Pitch tracks for individual utterances are obtained



using a correlation-based analysis followed by dynamic programming from the Wavesurfer
package [38].

4.7.2 Spectrogram Analysis/Synthesis
Wideband spectrograms (sruu [n, o]) are computed as in Section 4.2. GCT analysis is done using
a 2-D 512-point DFT on local time-frequency regions of size 500 Hz by 37.5 ms extracted using a
2-D Hamming (overlap factor 4). A high-pass (low-pass) 1-D filter hhp [n] (h1p [n]) is designed
using the frequency sampling method [29] hhp [n] (h1p [n]) of order 80 with pass-band (stop-
band) beginning at

O.SVb = 60 29(0.62Sx10-3x16000) = 0.07Sr (4.46)
16000

corresponding to an extremal low-pitch case of 60 Hz from (4.31) with stop-band (pass-band)
roll-off to Vb. hhp [n] is applied to sfuul [n, o] to obtain Sfull,hp [n, to]. Sfull,hp [n, o] is multiplied
by a set of sinusoidal carriers followed by low-pass filtering by h1p [n] to obtain envelope
estimates which are used to fit gain parameters in a least squares formulation. In demodulation,
we used Sfullhp [n, o] instead of sfull [n, o]; this was observed in preliminary experiments to
reduce the influence of cross terms near WGCT origin after demodulation such as in the case of
low-pitch values (e.g., for males).

As a goodness metric, we compute root-mean-squared errors (RMSE)

RMSE = Ez E [s'puun, co] -- fruu [n,S' (4.47)

where WN denotes the total number of DFT frequency bins in the spectrogram and s'uui [n, o]
and u11 [n, o] are the original and reconstructions, respectively, normalized to have maximum
value of unity. In addition, we compute the signal-to-noise ratio (SNR)

SNR = 10log ( "[smn;12 2) (4.48)
\In xsingle [n] -2singlein[|il

where sSinge [t] is waveform estimated obtained in combining sfuu[n, o] with the phase of the
original signal [1] (Chapter 3).

Figure 4-19 shows results of a single female utterance. For reference, we show also an error
spectrogram computed as the absolute difference between the bootstrap and true spectrograms
after normalization. One limitation of the demodulation approach (in both bootstrapping and
direct methods) is a "smoothing" effect on onset/offset structure, presumably due to bandlimiting
of the envelope term in the proposed modulation mode (Figure 4-19, time 750). In addition, both
methods fail to capture aperiodic content such as at time 500 as may be due to glottalization [1].
For voiced speech, the "enforcement" of periodic carriers and their use as guides for reassignment
in bootstrapping are evidently insufficient to fully address these effects.

We show in Figure 4-20 the full spectrograms and Figure 4-21 and Figure 4-22 individual
spectral and time slices comparing the sinusoidal fit and demodulation methods. Here, we refer
to "sinusoidal fit" as the two-dimensional sinusoidal-series fit for analysis/synthesis described in
Section 3.3. Observe that the sinusoidal fit is unable to capture the sharpness of the initial
formant peak in Figure 4-21 similar to that shown in Chapter 3. We can expect that due to the



smoothing of the formant envelope from the window that this effect would be less pronounced in
the wideband reconstructions relative to the narrowband reconstructions. Indeed, in the extremal
case of a flat envelope, demodulation is equivalent to fitting with a sum of sinusoids.
Nonetheless, the present results demonstrate that a more general envelope component as
described in the modulation model is necessary for representing spectral shaping effects in the
wideband spectrogram. In addition to spectral shaping effects, observe in Figure 4-22 that the
sharpness of the onset is better modeled through demodulation than through the sinusoidal fit. In
the waveform (Figure 4-23), the latter effect results in generation of noisy content prior to onsets
using the sinusoidal method.

Overall, reconstruction results demonstrate that speech content is generally well-represented by
the modulation model with errors values ranging from 7e-3 to 4e-2 on a scale of unity as the
maximum value. Quantitatively, bootstrapping appears to modestly outperform the direct method
(Table 4-2) using the RMSE metric. Nonetheless, this is not reflected in the resulting waveforms
in SNR, presumably due to phase effects in reconstruction. Quantitatively, bootstrapped
demodulation outperforms the sinusoidal fits in all cases. In informal listening, (non-author)
subjects did not distinguish waveform reconstructions between demodulation methods employing
the direct mapping, bootstrapping and the original. Onsets were observed to be sharper using the
demodulation method reflecting the original waveform than in the sinusoidal fit method,
consistent with the the higher SNR values using both demodulation methods and the poorer
reconstruction of the onsets in the waveforms shown in Figure 4-23.
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Figure 4-19. (a) Original spectrogram of female utterance "You'll have to try it alone."; (b)
reconstruction using direct method; (c) reconstruction using bootstrapping method; (d)
Absolute error spectrogram computed as the absolute value of the difference between (b)
and (a).
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Figure 4-20. (a) Original spectrogram of male utterance "He'd not only told me so, he'd
proved it."; (b) reconstruction using a 2-D sinusoidal-series fitting method (see Section 3.3)
with bootstrapping (c) reconstruction using demodulation (direct) and (d) bootstrapping.
Extraction of spectral slice (white arrow, a) and time slice (yellow arrow, a) for Figure 4-21
and Figure 4-22, respectively.
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Spectral Slices

Figure 4-21. Spectral slice extracted from Figure 4-20 with 2-D sinusoidal-series fitting with
reference spectrum (red), sinusoidal fitting with bootstrapping (blue), and demodulation
with direct mapping (green) and bootsrapping (black).
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Figure 4-22. Time slice extracted from Figure 4-20.
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Figure 4-23. Reconstructed waveforms from Figure 4-20 showing
from sinusoidal fitting (a, b).

additive noise content

Table 4-2. Average RMSE and SNRs for analysis/synthesis of spectrograms
errors.

Direct - Demod. Boot - Demod. Direct - Sin Boot - Sin
RMSE (Males) 4.35e-2 [9.54e-3] 6.80e-3 [5.Ole-3] 9.09e-3 [5.86e-4] 5.05e-2 [1.11 e-2]
RMSE (Females) 3.32e-2 [6.09e-3] 7.92e-3 [5.44e-4] 1.27e-2 [9.64e-4] 3.58 [6.4e-3]
SNR (dB) (Males) 24.61 [0.46] 22.15 [0.18] 19.78 [0.37] 20.59 [0.33]
SNR (dB) (Females) 21.89 [0.39] 23.04 [0.43] 18.94 [0.40] 19.81 [0.41]

4.7.3 Co-channel Speaker Separation
In speaker separation, the mixed signal xmix[n] is analyzed with short-time and GCT parameters
identical to those in analysis/synthesis. We compute RMSE errors in the spectrogram estimate as
in analysis/synthesis for applications such as pre-processing for speech recognition. For human
listening, reconstructed spectrograms are combined with the phase of the mixed signal to obtain a
waveform estimate. We denote waveform estimates as x;[n], and we compute the signal-to-
interferer ratio (Chapter 3)

SNR, = 10log ( En X2 1 r)
E~n[xdal-_2dn]]2

(4.49)

where xi [n] is the original (unmixed) utterance. In fusion, the a parameter was swept on the
development set from 0 through 1 with a step size of 0.01; we used the exclusion method from
Chapter 3 and the bootstrap method the narrow and wideband estimates. The a value
corresponding to the highest average SNR across all waveforms was used in testing. We obtained
a "best" value of a = 0.41 to be applied in testing. In fusing with the sinusoidal-based system
we obtained a "best" weighting of a = 0.23, fl = 0.38. The relative contribution to the final

100

and standard



waveform is therefore ranked in the following order based on this weighting: sinusoidal-based,
narrowband estimate, wideband estimate.

Figure 4-24 and Figure 4-25 show the results of wideband-based speaker separation.
Demodulation is capable of suppressing harmonic content from an interferer, thereby leading to
separation of speakers; observe for instance at time 700 in Figure 4-24a harmonic content from
the interfering speaking suppressed in Figure 4-24c and d. A limitation in separation can be
observed in Figure 4-25 naer time 1700 where the onset of the target is poorly replicated in the
estimate. As in analysis/synthesis, this is likely due to bandlimiting of the envelope term in
demodulation. Quantitatively, separation can result in RMSEs on the order of 3e-2 (on a scale of
unity as the maximum value) and 4-6 dB global SNR gains across all permutations of mixtures
(Table 4-3, Table. 4-4). In general, bootstrapping appears to provide modest gains over the direct
method. In informal listening, (non-author) subjects reported good reconstruction of the target
speaker with suppression (but not complete removal) of interfering speakers using both the
bootstrapping and direct methods.

In Figure 4-26, we consider our fusion results between the narrowband and wideband estimates.
Observe in this example that although the narrowband estimate provides better estimates overall,
the wideband estimate provides complementary information in better suppressing content from an
interferer at time -2.6e4. Fused between the narrowband and wideband estimates were reported
in informal listening (non-authors) to exhibit less "abrupt" insertions of interfering speakers,
consistent with the overall gains observed in average SNR values up to - 1 dB relative to either
estimate alone.

Finally, in Figure 4-27, we show the results of fusing the narrowband, wideband, and the
reference sinusoidal-based (i.e., frame-based) method for a mixture of two male speakers.
Observe that near time 6000 that the sinusoidal-based method exhibits residual periodic structure
from an interfering speaker; this is not the case in the narrowband and wideband estimates.
Fusion of the three waveform results in suppression of this periodic component and an SNR gain
of -1 dB. In informal listening, the non-author listeners reported a reduction of the periodic
component of the interfering in the fused waveform relative to the sinusoidal-based estimate,
consistent with these observations. This gain is consistent with the overall gains obtained across
mixture components as summarized in Table. 4-4.
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Figure 4-24. (a) Mixture spectrogram of a male ("They were shattered.") and female
("Neither his appetite"); (b) true male target; (c) male estimate using direct method; (d)
male estimate using bootstrap method. Observe suppression of harmonic content near time
800 due to demodulation in (c) and (d) relative to (a) (arrows).
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Figure 4-26. (a) Fusion estimate between narrowband and wideband estimates and truth
target utterance "appetite"; (b) narrowband estimate of target; (c) mixture waveform of
two females ("Neither his appetite, his exacerbations, nor his despair were akin to yours." +
"Forty-seven states assign or provide vehicles for employees and state business.") (d)
wideband estimate of target; note suppression in (d) of outstanding interferer in (b)
(arrows).
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Figure 4-27. (a) Waveform of mixture of two males ("They were shattered" + "He merely
said"); (b) target waveform "They were shattered."; (c) narrowband estimate; (d) wideband
estimate; (e) sinusoidal-based estimate; (f) fused estimate of (c), (d), and (e); (c-f) list SNR
gains. Observe near time 6000, the frame-based sinusoidal separation method exhibits
periodicity from the interfering speaker that is suppressed in the narrowband and
wideband estimates (arrows).

Table 4-3. Average RMSEs for speaker separation and standard errors [] on test set;
"Fusion (N+W)" refers narrowband and wideband fusion; here, "Sinusoidal" refers to the
frame-based sinusoidal separation method; "All Fusion" refers to narrowband, wideband,
and sinusoidal fusion.

____Direct Bootstrap Fusion (N+W) Sinusoidal All Fusion
MM 3.38e-2 [1.4e-3] 3.28e-2 [1.40e-3] 2.82e-2 [1.40e-3] 2.95e-2 [1.10e-3] 2.59e-2 [1.10e-3]
FF 3.22e-2 [8.96e-4] 3.19e-2 [8.81e-4] 2.56e-2 [6.10e-4] 2.01e-2 [5.24e-4] 2.14e-2 [4.78e-4]
FM(M) 2.77e-2 [8.61le-4] 2.82e-2 [9.29e-4] 2.49e-2 [9.42e-4] 2.23e-2 [5.84e-4] 2.09e-2 [6.72e-4]
FM(F) 3.52e-2 [1.00e-3] 3.64e-2 [1.00e-3] 2.79e-2 [7.08e-4] 2.77e-2 [5.81e-4] 2.55e-2 [5.43e-4]

Table. 4-4 Average SNRs (dB) for speaker separation (dB), standard errors [] on test set;
"Fusion (N+W)" denotes fusion of narrowband and wideband estimates; "All Fusion"
denotes fusion of narrowband, wideband, and sinusoidal-based estimates.

_________Direct Bootstrap Narrow Fusion (N+W) Sinusoidal All Fusion
MM 4.42 [0.12] 4.86 [0.15] 3.80 [0.15] 5.21 [0.16] -4.73 [0.13] 5.97 [0.13]
FF 5.63 [0.18] 6.02 [0.19] 6.31 [0.14] 6.75 [0.16] 9.18 [0.18] 8.77 [0.15]
FM -Male 5.46 [0.13] 5.92 [0.14] 4.91 [0.11] 6.35 [0.10] ~6.81 [0.13] 7.68 [0.10]
FM -Female 5.66 [0.14] 5.54 [0.15] 5.83[(0.11] 6.55 [0.14] 6.32 [0.10] 7.59 [0.14]

4.8 Conclusions
This work has proposed a model of speech-signal content as represented in 2-D analysis of
wideband spectrograms. We have validated the utility of this model for representing speech
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content in both analysis/synthesis and co-channel speaker separation experiments. In conjunction
with our previous work, the model motivates a novel taxonomy of speech-signal behavior in the
2-D Grating Compression Transform (GCT) that exhibits important distinctions in interpretation,
particularly in relation to "dual" behavior.

One implication of the proposed taxonomy is its potential for interpreting other time-frequency
distributions. For instance, the auditory spectrogram of [42] is generally viewed as being
"narrowband"/"wideband" in its low/high-frequency regions. The periodicity- and formant-
dependent carrier derived in the current GCT framework may be applicable to high-frequency
regions, thereby providing an explicit interpretation for modulation components observed in the
auditory spectrogram in relation to speech parameters. As suggested by our results in speaker
separation, the GCT may have additional applications due to its representation of speech
parameters. For instance, modifying carrier components in the WGCT may be used for pitch
and/or formant bandwidth modification in voice transformation. As suggested in Chapter 3, the
mapping of noise and speech content in distinct regions of the GCT space also motivates
applicability to speech enhancement. These new directions will be further discussed in Chapter 7.
Finally, the present speaker separation framework may be combined with existing multi-pitch
tracking methods towards a full separation system; efforts towards developing such a system are
described in Chapter 6.

4.9 Appendix I
Consider a time-varying decaying sinusoid represented by Green's function g [n, m], where m is
the time of excitation, and n is the time axis along which we observe the resulting response [1],
i.e.,

g[n,m] = fef-C"(292 cos(f"O(z)dz)u[n - m]. (4.50)

d(z) and <(z) are integrable functions corresponding to the instantaneous decay rate and center
frequency of the formant, respectively, and f is the initial amplitude of the response. The output
y[n] of g [n, m] excited by p[n] (4.4) is a superposition sum [1]

y[n] = Em--, g[n,m]p[m]. (4.51)

Substituting (4.4) and (4.50) into (4.51), we obtain

y[n] = Eolefefa(z~az cos(f," (z)dz)u[n - kP]. (4.52)

Let no denote the time at which the window is shifted to extract a segment y, [n] of y[n], i.e.,

yno [n] =453
w[n -no] EOe--fkpa(zdz cos(f, z)dz) u[n - kP]. (4.53)

Consider no in (4.53) such that the entirety of the window is located between impulses at NkP
and (Nk + 1)P. Within y,0 [n], we assume that the decay rate andfrequency of the sinusoid are
constant and afunction of the time of analysis no

yno[n] ~ w[n - no]

E Nofe~(i(no)n+fkp &(z)dz) cos(k(no)n + f,", (z)dz) u[n - kP]. (4.54)
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This "frozen time" approximation is similar to that assumed in typical short-time analysis
methods (e.g., linear prediction [3]) to invoke stationarity of speech parameters. The contribution
of the k*h component in (4.54), although time-varying, appears to come from a decaying sine with
constant decay and frequency. Nonetheless, its starting amplitude (of the decay) and phase (of
the sinusoid) will differ as a function of the distance between no and point of excitation kP.

We make a further approximation by assuming that each contribution to the summation across k
in (4.54) is aligned at the window onset such that it may be viewed as a scaled and shifted
decaying sinusoid, thereby ignoring effects of the phase terms fj 1 <p(z)dz and temporal overlap,
i.e.,

ynf[n] ~ w[n - no] k= e-G",a(zzh[n - no; no]. (4.55)

h[n; no] = fe("o)" cos(<(no)n) u[n] (4.56)

The Fourier transform of (4.55) and its magnitude are

Y(no, e) kfe-a(zfk [W(o)) * H(o, no)]eIo (4.57)

H (0o , n o) = 
O 5 - + n + "(

eno)+eJ(6)-P(nO)) et4no)+ej(&)+ (l)) (4.58)

|Y(no, O)|iocai ~z: w[no, o]Ed[no]H(no, o) (4.59)

Ed [no] = k . e- efk," a(z)dz (4.60)

i(no,wo) = |W(o) *, H(w,n o)|, (4.61)

where |R(no, w)I is a smoothed version of the formant and Ed [no] is a time-dependent amplitude
term. In (4.59), we have added a 2-D window term w [n, o] to emphasize analysis in a local time-
frequency region.

While Ed [no] is not a periodic function in general, it can be made periodic in P under certain
constraints such as d(z) = ao or d(z) = cos (=z) corresponding to constant or sinusoidally-
varying decay rates. These conditions therefore allow for time-varying formants to be
represented as a general time-dependent envelope term in conjunction with a periodic carrier. For
instance, d(z) = ao reflects a condition of constant decay but potentially changing formant
frequency. For periodic Ed [no], it can be shown that the 2-D Fourier transform of (4.59) (i.e., the
WGCT) is

Y v, f) = W (v, i) *,n (,), (KS(v) + ZN 0.5f.6(v ± (4.62)

where r (v, fl) is the 2-D Fourier transform of H (no, w) and K, #1, and N are parameters of a
sinusoidal series. Our discussion motivates a modulation view of the wideband spectrogram to
include time-varying formant structure. Nonetheless, this view holds only approximately in time
regions away from excitation impulse onsets due to the choice of the window position.
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Chapter 5

Multi-Pitch Estimation
In this chapter, we describe approaches to multi-pitch estimation using the proposed two-
dimensional (2-D) speech processing framework for the narrowband spectrogram representation.
In Section 5.1, we briefly review the narrowband signal model for the (narrowband) Grating
Compression Transform (GCT) and highlight some of its analytical properties. In Section 5.2, we
demonstrate the ability of the GCT-based representation to analyze pitch and pitch-dynamic
information of synthetic signals consisting of single and multiple periodic sources. In Section
5.3, we describe a multi-pitch algorithm for all-voiced speech using a simple variation of the
GCT model; we evaluate this algorithm on a collected data set to assess the utility of the GCT in
addressing an outstanding problem in existing multi-pitch estimation methods in handling pitch
trajectory mixtures that have pitch values that are "close" to each other, thereby exhibiting
crossings and/or mergings. We conclude the chapter in Section 5.4.

5.1 Signal Model for Pitch and Pitch-dynamic Information
Recall from Chapter 3 that a localized region of a narrowband spectrogram computed for voiced
speech can be modeled using a sinusoidal series-based amplitude modulation formulation, i.e.,

s,[n, o] = w[n, o]s[n + ne, w+c] (5.1)

s, [n, o] w a. [n, o] [K + Zoo=1 ak COS(q# [n, )] (5.2)

#kk[n, o] = kf,(n cos 0 + o sin ) + Ok. (5.3)

To analyze pitch, recall that the 0 and f., terms of the sinusoidal series carrier term K +
Zk=1 cak COSOk [n, w]) can be shown to relate to pitch and pitch-dynamic information. From
Chapter 3, recall also for the case of two concurrent speakers that we invoke a linearity
assumption of the model such that

smix[n, o] ~ E=1 s[n, o] (5.4)

st[n, o] = a1 [n,w] (Ki + E~1 agkcos I[n, o]) (5.5)

6 Substantial portions of this chapter were obtained from two publications: [53] [20]
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with resulting GCT mapping

Smix(v,f) ~
Z? Ai (v, 11) +E=,1A(f)+ (5.6)

2 N[ ei*ikk,i(v - s, COS 0 k,11 + kls Ok) 1.
i=1 k=1 +e -ji,kAk,i s+ , COS Ok,f - W, ssin Ok)

In multi-pitch analysis, existing methods typically rely on differences in either 1) pitch values
and/or 2) energy content within a frequency region to extract pitch information for a distinct
speaker. For instance, if two speakers exhibit different pitch values, they can be separated based
on this distinction alone; in addition, if one speaker exhibits substantially greater energy within a
frequency band, a reliable estimate of the dominant speaker can also be obtained while ignoring
the weaker speaker (i.e., as in binary masking [43]). The present GCT mapping can similarly
exploit such conditions. Nonetheless, the GCT's explicit representation of pitch dynamics can
invoke additional separability that builds on that provided by conditions 1) and 2).

5.2 GCT Analysis of Synthetic Pitch Signals
Previous work in [7] has shown that the GCT can accurately estimate pitch using a single low-
frequency region of the spectrogram when applied to single speakers. In the subsequent sections,
we explore pitch and pitch and multi-pitch analysis with the GCT using multiple frequency
regions to assess its properties and limitations. First, in Section 5.2.1, we demonstrate
empirically the limits of analysis fidelity in extracting pitch and pitch-dynamic information across
multiple frequency regions for a single source. Next in Section 5.2.2 and 5.2.3, we demonstrate
the GCT's ability to provide separation of pitch information for multi-pitch signals with identical
spectral shaping. Finally, in Section 5.2.4, we demonstrate the GCT's ability to analyze more
general multi-pitch signals with different spectral shaping. Our discussion in this section focuses
on pitch analysis, which we delineate from pitch tracking. Specifically, we refer to pitch analysis
as extracting pitch values of signals without making assignments of those values to distinct
speakers (in multi-pitch signals). We refer to pitch tracking (to be subsequently performed in
Section 5.3) as both pitch analysis and making assignments of pitch values to distinct speakers for
multi-pitch signals

5.2.1 Multi-Region Analysis of a Synthetic Vowel
Synthetic Data: A synthetic impulse training with rising pitch of 150 Hz to 250 Hz across a 500
ms duration was generated using linearly spaced impulses with a glottal flow component [19].
The signal was generated at an oversampled 80 kHz but downsampled to 8 kHz for processing.
This synthesis method results in a spectrogram with distinct harmonic structure with rising pitch,
consistent with that typically observed in real speech [19], and avoids step-like behavior in the
harmonic structure as observed in [16]. An all-pole filter with stationary formant frequencies of
500, 1500, and 2500 Hz and bandwidths of 80 Hz was used to filter the source signal to generate
the vowel.

Analysis: The waveform is pre-processed using a pre-emphasis filter H(z) = 1 - 0.97z-. The
short-time Fourier transform (STFT) was computed using a 25-ms Hamming window, 1-ms
frame rate, and a 512-point discrete Fourier transform (DFT). The magnitude of the STFT
(STFTM) was taken followed by the log operation to generate the log-STFTM. A 2-D gradient
operator was applied to the log-STFTM as a preprocessing step to remove near-DC terms in the
Grating Compression Transform [7]. Region sizes of 100 ms by 700 Hz were extracted from the
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middle of vowel in time across multiple frequency regions; step sizes along frequency were set to
1/16* the size of the region corresponding to -22 Hz. Finally, the GCT was computed using a 2-
D DFT of size 512 by 512. The position of the maximum value of the GCT magnitude was
extracted and used in the pitch and pitch-dynamic mappings (3.24) and (3.26) to obtain estimates
(see Chapter 3).
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Figure 5-1. (a) STFTM of synthetic vowel and regions across frequency (solid white ); (b)
Pitch estimates (blue '*-') and true pitch (solid, red); (c) as in (b) for pitch derivative; (d)
histogram of errors from (b); (e) histogram of errors from (e).

In this example, we observe that absolute pitch estimate errors range from 0 to 6 Hz. Errors can
be attributed to two factors. First, since the local formant structure is not strictly bandlimited, the
A I(v, fi) term can interact with the carrier components when mapped to the GCT domain; this can
be particularly deleterious to estimates if the peak value of A(v,1) is not located at the GCT
origin. This is consistent with the observation that pitch errors peak formant frequencies of 500,
1500, and 2500 Hz (Figure 5-1b). In addition, as observed in [19] and Chapter 3, changing pitch
invokes fanned harmonic line effects in the overall spectrogram in contrast to the approximation
of parallel lines within a local time-frequency region. Pitch derivative estimates exhibit an
oscillatory behavior and are generally within -0.05 Hz/ms (relative to the underlying rate of 0.2
Hz/ms). These errors are presumably due to a combination of errors in the pitch itself (as this is
used in computing the pitch derivative) as well as fanned harmonic line effects. The present
results quantitatively demonstrate that the GCT framework can analyze pitch and pitch-dynamic
information by performing simple peak-picking in the GCT domain (while ignoring the GCT's
near-DC terms) albeit with limitations. As will subsequently be demonstrated, however, these
errors in analysis can be at least be partially overcome by combining pitch (and/or pitch-
derivative) estimates across frequency regions for a single point in time.

5.2.2 GCT-based Separability of Pitch Information for Concurrent Vowels
This section investigates properties of multi-pitch analysis using the GCT. Traditional
approaches to multi-pitch analysis obtain pitch candidates from autocorrelation estimates of band-
pass filtered versions of the waveform on a frame-by-frame basis (e.g., [33]). This approach
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provides distinct pitch candidates for a single point in time but does not represent the pitch
dynamics of multi-pitch signals. Here, we show by example that the GCT's representation of
pitch dynamics within a local time segment invokes separability of pitch information distinct
from that obtained in short-time autocorrelation analysis.

Consider for instance a condition in both speakers have the same pitch value and similar energy
within a frequency region. Figure 5-2 illustrates two scenarios of pitch content under this
condition. Observe that while separability in the GCT can occur based on pitch alone, it can also
occur if pitch values are the same but exhibit distinct dynamic information. The GCT
representation can therefore provide extraction of pitch content and separability in three ways: 1)
energy dominance, 2) pitch values, and 3) pitch dynamic information.
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Figure 5-2. (a) Schematized localized region with local formant structure (shaded)
equivalent in mixture of two speakers (solid, dashed lines) and distinct pitch values; (b)
GCT of (a) indicating separability of pitch information from pitch value; additional carrier
terms omitted for simplicity; (c) As in (a) but with equal pitch values but trajectories
moving in opposite directions; (d) GCT of (c) showing separability of pitch information
based on pitch dynamic information.

Synthetic Data: Two vowels with distinct formant structures (Figure 5-3) were excited using
source signals with linearly rising and falling pitch values of 150 to 200 Hz; source signals were
generated as in Section 5.2.1. Along the frequency axis (Figure 5-3), the vowel structures were
chosen to be distinct below - 1500 Hz but equal above -1500 Hz) in terms of their magnitudes.
This is done to investigate properties of analysis techniques under differing/equal energy
conditions within distinct frequency regions. The vowels were sampled at 8 kHz.

Analysis: In GCT analysis, we again apply the 2-D gradient operator to the entire spectrogram to
remove effects of the near-DC components in the GCT. Localized regions centered at both 2050
Hz (denoted as R2), where the formant structure of the two vowels is nearly identical, and at 1200
Hz (denoted as R1), where they differ, were extracted using 2-D Hamming windows of size 50
ms by 700 Hz. The GCT was computed using a 512 by 512-point 2-D discrete Fourier transform.
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As a representative method of existing short-time analysis techniques, two linear-phase band-pass
filters centered at 1200 Hz and 2050 Hz were applied to the waveform. To obtain an envelope,
filtered waveforms were half-wave rectified and low-pass filtered (cutoff = 800 Hz). The
normalized autocorrelation (denoted as r, [n]) was computed for a 30-ms duration of the
envelopes.

Figure 5-4 shows results of these analyses for RI and R2. Observe in short-time analysis for RI
that a single distinct pitch estimate and its sub-harmonics are present; however, R2 reflects the
interaction of closely-spaced periodicities and appears "noisy". These observations are similar to
those observed in which these "noisy" bands were discarded in favor of those exhibiting a
dominant pitch to compute a summary correlogram at a single point in time as described in [33].
Figure 5-4c-d show GCTs computed over localized time-frequency regions at R1 and R2. A
single dominant set of impulses, corresponding to a single pitch value, is present in the GCT for
Ri, similar to rxx[n] for R1. This is to be expected given that the formant envelope magnitudes
are different, thereby allowing for the log-max approximation. In contrast, observe that two
distinct sets of peaks can also be seen for R2 corresponding to two similar pitch values and
energy values of the formant envelope. The GCT can therefore separate pitch information of two
speakers with similar energies and pitch values in a localized set of frequency bands by explicitly
representing the temporal dynamics of distinct speakers in contrast to traditional short-time
methods. This separability generalizes to the case where envelope structures exhibit similar
energies as well as different pitch values/temporal dynamics as shown in Figure 5-2.

(a) Formant Structure of Concurrent Vowels
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Figure 5-3. (a) Spectrum showing formant structures of rising and falling vowels. Regions 1
(solid) and 2 (dotted) for analysis using short-time autocorrelation analysis; (b) spectrogram
of concurrent vowels (plotted on linear amplitude scale) with corresponding Region 1
(dotted) and Region 2 (solid) shown for GCT analysis.
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Figure 5-4. (a) Region 1 analysis showing distinct peak (arrow) corresponding to pitch
value; (b) as in (a) but for Region 2; observe that no distinguishable peak at the pitch value
is present; (b) GCT analysis of Region 1 showing one set of dominant peaks corresponding
to dominant local formant structure; (d) as in (c) but for Region 2; observe that two distinct
pairs of peaks corresponding to both vowels can be obtained (yellow arrows).

5.2.3 Multi-Pitch Analysis of Concurrent Vowels - Identical Formants
Building on results from the previous section, we demonstrate the utility of the described GCT
framework in multi-pitch analysis for a condition of synthetic vowels with identical formant
structure.

Synthetic Data: We use for the analysis signal a concurrent vowel from Section 5.2.2 excited with
five distinct pairs of pitch trajectories to account for a variety of conditions:

1. Stationary pitch of 100 Hz + Stationary pitch of 300 Hz

2. Rising pitch from 100- to 250-Hz + Stationary pitch of 175 Hz

3. Rising pitch from 125- to 150-Hz + Falling pitch from 250- to 200-Hz

4. Rising pitch from 100- to 150-Hz + Rising pitch from 175- to 225-Hz

5. Rising pitch from 150- to 200-Hz + Falling pitch from 200-Hz to 150-Hz

We denote these conditions subsequently as "Conditioni", "Condition2", etc. Pitch trajectories
were synthesized using pure impulse trains and with sampling rate of 8 kHz and used to excite the
vowel structure of the rising vowel in Figure 5-3. All signals had duration of 0.5 seconds.
Observe that conditions 2 and 5 result in pitch trajectories that exhibit crossings at the center of
the signal. The conditions synthesized reflect permutations of decreasing/increasing tracks in
conjunction with same/different rates of pitch change.
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Analysis Methods: A narrowband spectrogram spectrogram was computed using a 25-ms
Hamming window, 1-ms frame rate, and 512-point discrete-Fourier transform (DFT). Local
region sizes were extracted for GCT analysis of size 700 Hz by 150 ms; in discrete samples, this
corresponds to in 45 frequency and 150 in time. In our preliminary analyses, we observed that
the choice of region size could be varied in 500 Hz - 1000 Hz and 100 - 200 ms with similar
results. The mean value of each local region is removed prior to windowing with a 2-D
Hamming window; a 2-D DFT of size 512 by 512 is then used to compute the GCT and avoids
aliasing since the DFT length is larger than the region size. To extract pitch candidates, a 2-D
multi-peak picker is applied to the resulting GCT magnitude. Details of this peak-picker are
described in Chapter 3. For each local region analyzed, the two peaks with largest magnitudes
are kept. Note that we extract two peaks in this case due to the formant structure of the
concurrent vowel being the same for both signals in the mixture. The pitch mapping of (3.24) is
then used to obtain an estimate of the pitch.

The resulting pitch candidates are used in three distinct ways to assign pitch values to points in
time: 1) single-region, 2) clustering, and 3) an oracle assignment (Figure 5-5). In the single-
region method, pitch candidates obtained using only a single low-frequency region are used and
assigned to each point in time. This method was used in [7] in previous efforts in pitch analysis
of a single speaker and serves as a reference method for comparison. In clustering, we use a
simple median-based clustering method to obtain the two pitch estimates. Specifically, for each
point in time, the collection of candidates obtained across frequency regions are used to compute
a median value. Subsequently, we compute the median of the set of candidate with higher and
lower pitch values with respect to the median and assign the results as the pitch estimates.
Finally, the oracle method utilizes all pitch candidates across frequency regions for a specific
point in time; subsequently, the two pitch values closest in absolute frequency value to the true
pitch values are used as the estimates. The final method assesses the ability of the multi-region
based GCT analysis for extracting accurate pitch estimates, independent of how the pitch
candidates are assigned to distinct time points.
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Figure 5-5. Schematic illustrating multi-pitch analysis method; (a) local regions (shaded
blue) consisting of pitch candidates; extraction of all pitch candidates at time point t2 across
all frequencies (dashed blue); (b) distinct analysis methods; (c) resulting pitch values
assigned for each point in time with true pitch value (black hollow), median clustering
(blue), single-region (green), and oracle (red) denoted.

As an additional reference, we evaluate the effect of assuming "dominance" of a single target
signal in local time-frequency regions, a property typically used in multi-pitch analysis
approaches as previously noted (e.g., Figure 5-4). Note that because the mixed signal analyzed in
our experiments is a concurrent vowel with identical formant structure for both underlying pitch
tracks, the frequency sparsity assumption for distinct signals in the mixture is violated. We apply
the oracle and clustering approaches to a subset of the pitch candidates. Specifically, we remove
from the full set of candidates those that corresponds to the 2nd-largest peak in the GCT domain
for each local region analyzed. By doing so, we effectively extract pitch information using only
the dominant peak in the GCT of each local time-frequency region. We refer to this set of
candidates as the "dominance" set.

We use two methods to characterize the performance of our analyses methods. First, we use the
collection of pitch candidates at each point in time to compute a histogram per time point of all
possible pitch values (ranging from 80 to 350 Hz); note that this is done using the full set of
candidates as well as the subset of candidates used in assessing the effects of the "dominance"
assumption. These histograms qualitatively assess the distribution of resulting pitch candidates
obtained in analysis. Second, as a quantitative metric for performance, we compute root-mean-
squared-errors (RMSE) defined as

RMSE= Z 1 EL1( -x (5.7)

where L is the length of the mixture, xtj and Itf are the reference and estimated pitch values,
respectively; here, the estimated pitch values correspond to the "single", "clustering", and
"oracle" methods. Since we do not perform explicit assignment of the pitch values to distinct
signals in the mixture, we use the "best" assignment at each time point of the resulting estimates
relative to the true pitch values, where "best" corresponds to the minimal absolute difference in
frequency.
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Figure 5-6. (a) Histogram of pitch estimates for Condition1 obtained from GCT analysis
assuming a single dominant signal in a local time-frequency region; (b) Multi-pitch analysis
results from the candidates in (a) with true (solid, red) pitch tracks, clustering ('x') and
oracle ('o') denoted. RMSE values (Hz) denoted for oracle (0), and clustering (C); (c) as in
(a) but for the full set of candidates (i.e., two peaks per region); (d) as in (b) but now also
including single-region analysis as in [7].
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Figure 5-7. As in Figure 5-6 but for Condition2.
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Figure 5-8. As in Figure 5-6 but for Condition3.
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Figure 5-9. As in Figure 5-6 but for Condition4.
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Figure 5-10. As in Figure 5-6 but for Condition5.

Results: Figure 5-6 through Figure 5-10 show the results of our analyses for each pitch trajectory
pair. Comparing histograms between the full pitch candidate set and those of the "dominance"
subset, observe that the full set exhibits high counts at pitch values close to both underlying pitch
trajectories across time. In contrast, candidates in the "dominance" histograms appear to "jump"
between pitch tracks across time (Figure 5-7a). For instance, observe in Figure 5-7 that for time
0~10, candidates primarily correspond to the stationary pitch track while from time 10~40, they
correspond to the rising pitch track. This effect is not observed using the full set, in which
candidates distinctly highlight both underlying pitch tracks. One disadvantage of the full set,
however, appears to be potential pitch "halving" (e.g., Figure 5-7c, time 30~40) trajectory,
indicating that the amplitude of the peaks corresponding to the stationary pitch are dominated by
the 2"d harmonics of the moving pitch. In addition, high pitch values, unrelated to the underlying
true pitch values (or their harmonics in the GCT space), can also be are observed in the full set
histograms. These peaks are presumably due to the near-DC terms in the GCT corresponding to
the envelope in the signal model.

Table 5-1. RMSE (Hz) across pitch trajectory conditions and methods for mixtures with
identical formant structure; oracle (0), clustering (C), and single (S), for dominant-peak
only and full set of peaks.

RMSE (Hz)/Condition Condition1 Condition2 Condition3 Condition4 Condition5
O/C (Dominant) 0.86/38.31 10.84/19.97 13.83/46.58 18.58/42.99 3.13/11.39
O/C (Full) 0/2.20 0/9.32 0.29/5.58 0/3.82 0/4.07
S (Full) 10.36 16.12 18.21 23.45 12.55

In the pitch analysis results, observe that, consistent with the discrepancy between the
"dominance" set and the full set, the oracle assignment is consistently worse in the former when
compared to the latter. Most notably, at certain time points (e.g., -35 in Figure 5-7b), two
candidates with similar values corresponding to one underlying pitch track are obtained, thereby
implying the absence of the other concurrent signal. This reflects the fact that pitch candidates
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from the 2"d speaker are completely absent in the "dominant-peak only" subset. In contrast, when
using the full set, the oracle assignments result in a nearly-exact estimate in all conditions with a
maximum RMSE of 0.26 Hz in Figure 5-8. Quantitatively, Table 5-1 summarizes the RMSE
values across pitch conditions and pitch analysis methods. When using the full set of pitch
candidates, clustering methods result in lower RMSE values overall relative to use of a analysis
from a single region, thereby demonstrating the ability of using multiple regions across frequency
to obtain accurate multi-pitch estimates. In addition, the full candidate set generally results in
lower RMSE in the oracle and clustering methods relative to using the dominant-peak only subset
of candidates. This is consistent with the fact that separation of pitch information due to
"dominance" cannot occur since the formant structures of the two vowels are identical.

5.2.4 Multi-Pitch Analysis of Concurrent Vowels - Distinct Formants
The previous section applied the GCT for multi-pitch analysis of mixtures of vowels with
identical formant structure, thereby highlighting the GCT's unique ability in this condition to
provide separability of pitch information despite the lack of frequency-region based "dominance"
typically used in short-time/frame-based analysis methods. In this section, we explore the effects
of mixtures of vowels having distinct formant structure. Specifically, we synthesize a set of
vowel mixtures with pitch tracks identical to those in Section 5.2.3 but formant structures shown
in Figure 5-11. The formant structures are designed to account for conditions in which spectral
shaping is equal (i.e., at Hz), partially overlapping (at Hz), and generally non-overlapping (at Hz).
All GCT-based analysis steps are identical to those used in Section 5.2.3.

Distinct Formet Structures of Mixture
25

20-

615-

10

500 1000 1500 2000 25o 3000 a500 4000
Frequency (Hz)

Figure 5-11. Frequency response magnitudes of two distinct formant structures (red dotted
and blue solid) used in synthesizing vowel mixtures; observe that the spectral shaping is
identical -800 Hz corresponding to the first formant, partially overlapping near -1900 Hz
corresponding to the second formant, and virtually "separate" at the third formant at
-2700 and -3500.
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Figure 5-12 through Figure 5-16 show results of this analysis while Table 4-3 summarizes our
results. Observe that in contrast to the identical-formants condition, use of the full set of pitch
candidates results in substantial degradations in pitch analysis accuracy in contrast to use of only
the subset of dominant-peak only pitch candidates. This reflects the fact that the primary peak in
the GCT in regions of differing spectral shaping (e.g., at the second and third formants in Figure
5-11) will correspond to the dominating speaker while a secondary peak in the GCT does not
correspond to the pitch value of the weaker speaker. Qualitatively, we see that effects of this
behavior in comparing histograms of the pitch values (e.g., compare Figure 5-12a versus Figure
5-12c). Inclusion of the secondary peak results in a multitude of addition pitch values that are
substantially far away from the true pitch values of either speaker. While these "spurious" peaks
are also present when using only a dominant peak, this effect is notably greater when using the
full set of peaks. Quantitatively, RMSE values are consistent with these observations in showing
that use of the dominant-peak only set of candidates results in significantly lower RMSE values
than when incorporating the full set of candidates; this occurs for both the oracle and clustering
methods. Clustering nonetheless results in lower RMSEs than use of a single region, further
motivating the use of multiple regions in pitch analysis via the GCT.

(a) Histogram of Pitch Candkiates (Dominant) (b) Estimate RMSE (Dominant), 0:0, C:0.87982
350 3 50r-

300300

1250250
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150150

1001 0, 0+04#oFol. 9 o

0 10 20 30 40 0 10 20 30 40
Time (n) Time (n)

(c) Histogram of Pitch Candidates (Fuil) (d) Estimates RMSE (Full), S: 28.6255,0:0, C:1.4639
350350

30030
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100 10
0 10 20 30 40 0 10 20 30 40

Timem (n) Time (n)

Figure 5-12. As in Figure 5-6 for Conditioni but for distinct formant structure. Legend for
(b) and (d): true pitch values (red), oracle (green 'o'), clustering (black 'I'), single (blue 1*)
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Figure 5-13. As in Figure 5-6 for Condition2 but for distinct formant structure.
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Figure 5-14. As in Figure 5-6 for Condition3 but for distinct formant structure.
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Figure 5-15. As in Figure 5-6 for Condition4 but for distinct formant structure.
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Figure 5-16. As in Figure 5-6 for Condition5 but for distinct formant structure.
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Table 5-2. RMSE (Hz) across pitch trajectory conditions and methods for mixtures with
identical formant structure; oracle (0), clustering (C), and single (S), for dominant-peak
only and full set of peaks.

RMSE (Hz)/Condition Condition 1 Condition2 Condition3 Condition4 Condition5
O/C (Dominant) 0/0.88 0.73/5.23 0.29/3.41 0/2.95 0/2.98
O/C (Full) 0/1.46 0.28/21.21 0.29/8.35 0/3.48 0/9.35
S (Full) 28.63 17.58 16.31 21.98 12.68

The results of Sections 5.2.2 through 5.2.4 have demonstrated the ability of the GCT to analyze
multi-pitch signals under conditions of identical and distinct formant structures. We have shown
that under the identical-formants condition, the GCT's explicit representation of pitch dynamics
can invoke a unique form of separability of pitch information that cannot be obtained using
traditional short-time/frame-based analysis methods. In this condition, extracting two pitch
candidates in each GCT computed for a local time-frequency region resulted in better pitch
analysis results than use of a single candidate. This is due to the fact that the dominance of
individual speakers in distinct frequency regions cannot be used to obtain pitch information from
distinct speakers (due to identical formant structure). Nonetheless, in the more general mixture
condition in which the formant structures of the mixture are distinct, the extraction of two pitch
candidates results in relatively poorer pitch analysis results than use of a single dominant peak.
This effect is due to the dominance of individual speakers' formant structures within localized
regions. Nonetheless, use of a single peak can still obtain accurate pitch analysis results in a
variety of pitch trajectory mixtures.

5.3 Multi-Pitch Estimation/Tracking of All-voiced Speech
5.3.1 Framework
Our previous discussion has highlighted properties and limitations of the GCT-based pitch and
multi-pitch analysis framework. We explored properties of GCT analysis of multi-pitch signals
under conditions of distinct and identical formant structure. In general, the occurrence of
identical formant structure within multi-pitch signal mixtures occurs less frequently than distinct
formant structure. This effect been demonstrated empirically through simulations of real speech
mixtures in [26], thereby motivating the exploitation of "dominance" of individual speakers
across frequency bands in speaker separation and multi-pitch analysis methods (e.g., [33]).
Simulations in that work were performed on the log spectrograms computed for mixtures of
speech. We analyze now the effect of the log operation on the proposed 2-D signal model of
speech. Specifically, taking the log of (3.22), we obtain

log s,[n, to] = log a,[n, o] + log(D + Z' 1 ak cos(O [n, to])). (5.8)

for aw [n, w] and D constrained such that the log arguments are positive. Observe that as a result
of this nonlinear transformation, the carrier terms containing pitch information are separated in
summation from the envelope term. In addition, since the log operation maintains the periodicity
of its argument, log[K + Z'1 ak cos(k [n, to])] is again a periodic signal (in n and (0) in 11s and
o such that pitch and pitch-dynamic information can be obtained from this term (see Chapter 3).
The corresponding Grating Compression Transform (GCT) representation is then

S 0 (v, fl) = A(u, fl) + EX='k(ufl) + (V(,, f)- (5.9)

6'_(V)* = 0. 5 akeki*ikS(v T kfl, cos ekD12 ± kfl, sin ek) (5.10)
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where we have used the fact that log(D + ' a Ck Cs( [n, w])) may again be expanded into a
sinusoidal series with fundamental 2-D spatial frequency fl, as in Chapter 3. From Chapter 3,
recall also for the case of two concurrent speakers that we invoke a linearity assumption of the
model such that

Smix[n, o] E [at[n, o](D +kl ai,k cOS #i,k [n, o])] (5.11)

The log of this mixture is then

log smix[n, O] = log E[a [n, o](Di + E aik cos CiA[n, cO])] (5.12)

We view this representation in the context of the log-max representation that has been
demonstrated through empirical observations to approximately match the true log magnitude [26]
of spectrograms computed on mixtures of speakers. Specifically, log six [n, w] becomes (in the
case of speaker 1 being "dominant")

log smix [n, co] z max(log s1 [n, C]log s1 [n, o]) (5.13)

log smix[n, o] ; log a1 [n, o] + log(D1 + ENI ak COS #01,k[n, d). (5.14)

where the max operation is extended for the GCT analysis to operate across the local time-
frequency region for each speaker. We apply this "dominance" approximation with the
underlying assumption that speakers will seldom exhibit equal energy in frequency regions due to
the diversity and sparsity of different formant structure. Furthermore, in multi-pitch estimation,
we do not require reconstruction of the spectrogram and/or waveform itself, such that the term

log(D 1 + EN ai,k cos #1,k [n, w]) is sufficient for representing the pitch and pitch dynamic
information (Chapter 3). In preliminary efforts, we observed that performance of the system
degrades when we attempted to utilize 1) a "full set" of two peaks within a time-frequency region
to obtain multi-pitch estimates and 2) the linear spectrogram instead of the log spectrogram. In
relation to the former condition, the 2nd dominant peak in the GCT was virtually always
"spurious" (see Section 5.3.2). In relation to the latter condition, improvements using the log
operation are presumably due to the reduction of effects from the underlying formant structure in
the GCT domain such that pitch and pitch dynamic information is "separated" in the GCT domain
from the envelope term (Figure 5-17). Despite this assumption of dominance, the current pitch
analysis framework nonetheless allows for representation of pitch and pitch dynamic information
for individual speakers. As will subsequently be discussed, inclusion of this information is
exploited to address the challenging condition of pitch trajectories that exhibit "close" values in
frequency.
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Figure 5-17. Schematic of (a) linear spectrogram showing sum of two speakers (red and
blue); (b) dominance assumption of red speaker dominating after applying log operation;
(c) GCT of (b) showing distinction of near-origin term (shaded) in GCT reflecting envelope
and harmonic components reflecting sinusoids only (hollow) from (5.9).

5.3.2 Estimation/Tracking Algorithm
This section describes an algorithm for performing multi-pitch estimation/tracking on mixtures of
all-voiced speech using this analysis framework. We refer to "estimation/tracking" as both
extracting pitch candidates from a multi-pitch signal (e.g., a mixture of two speakers) as well as
assigning pitch candidates to distinct speakers to generate pitch tracks. Our multi-pitch
estimation algorithm consists of short-time analysis, GCT analysis, discriminant-based pitch
candidate pruning, clustering, and a Kalman filtering framework as outlined in Figure 5-18.

Mixture
Waveform

Figure 5-18. GCT-based multi-pitch estimation algorithm.

Short-time Analysis: Mixture waveforms were analyzed using the short-Time Fourier transform
(STFT) to form the log spectrogram. A 32-ms Hamming window, 1-ms frame interval, and 512-
point discrete Fourier transform (DFT) was used to compute the logarithm of the STFT
magnitude, denoted as log-STFTM. A representative log-STFTM computed for a mixture of the
"Walla Walla" and "Lawyer" sentences spoken by two female speakers is shown in (Figure 5-19).

GCT Analysis: The log-STFTM is subsequently used for GCT analysis. A 2-D high-pass filter
was applied to log-STFTM to reduce the effects of the DC components in the GCT representation
and is denoted as log-STFTMp [7]. Localized regions of size 800 Hz by 100 ms were extracted
using a 2-D Hamming window from the magnitude of both log-STFTM and log-STFTMHp.
Overlap factors of 10 and 4 were used along the time and frequency dimensions and result in a set
of center frequencies for GCT analysis along the frequency axis and overlapped regions for
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analysis in time. A 2-D DFT of size 512 by 512 is used to compute two GCT's: GCTM (from
log-STFTM) and GCTHP (from log-STFTMHP). Seven features were then extracted:

(1) Pitch estimate fo from peak-picking the dominant peak in the magnitude of GCTHP
(IGCTHPI)-

(2) Pitch-derivative estimate from the peak of (1)at

(3) Amplitude of the dominant peak in IGCTHI.

(4) Normalized value of 3 relative to the DC value (6).

(5) "Harmonic to noise ratio" of dominant peak in IGCTHPI

(6) DC value of GCTM

(7) Overall energy of GCTM

(1) and (2) are obtained using the pitch and pitch-derivative mappings of (3.24) and (3.26).
Feature4 is computed as

Feature4 =-- (5.15)

Feature 5 is computed as a "harmonic to noise ratio" by

FeatureS = yInEmIa cos $ln,mI2 (5.16)
En EmIS[n,m]I 2 -EnEmlacos $[n,mI 2 -

where a = Feature3 and s [n, m] to the localized region of log-STFTM; this metric assess the
relative energy present in a sinusoid located at the dominant peak position relative to the energy
present in its removal from the original time-frequency region. Features 3 - 7 relate to properties
of the GCT not captured by the pitch and pitch-derivative and were motivated from the
subsequent aim of pitch candidate pruning. The present analysis extracts a single peak to
estimate the pitch value in 1) and contrasts the approach in 5.2.3 in extracting two peaks. This
approach is favored for real speech mixtures due to the mixture of different formant structure
between speakers (in contrast to identical formant structure in the simple multi-pitch analysis
conditions presented previously).
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Figure 5-19. (a) log-STFTM of mixture of "Walla Walla" and "Lawyer" sentences spoken
by a male and female speaker; (b) Band-wise classification performance of LDA on test
data; P(C) = percent correct classification, P(NS) = prior probability of a "not spurious"
candidate (c) Resulting binary mask of pruning with 1's (red) and O's (blue).

Linear Discriminant Analysis-based Pruning: From Section 5.2.2, we observed that GCT analysis
of multi-pitch signals can result in fo far removed from the true pitch value (denoted as fo). One
cause for this is that some regions exhibit low amplitudes of the harmonic structure due to the
formant structure. To account for these "spurious" candidates, linear discriminant analysis (LDA)
[44] was applied to the previously described set of 7 features to prune the candidates. In training,
we define a "spurious" candidate as one in which Ifo - fo| > y. y is set to 3a, where o is the
standard-deviation of the one-step differences in the pitch values of the training data.
Specifically, given a pitch track fo [n], we compute the standard deviation a of all the differences
Ifo [n - 1] - fo [n] I across all pitch tracks and utterances; in this work, a = 4.85 Hz. A
discriminant function is trained for each center frequency in GCT analysis and applied in a band-
wise fashion along time to prune the candidates. Figure 5-19b shows classification performance
on the testing data (Section 4) per band. Figure 5-19c shows a typical binary mask generated
from pruning across time and center frequency for the mixture in Figure 5-19a. l's denote
regions in which candidates are kept while 0's denote regions in which they are discarded.
Observe that the pruned regions in Figure 5-19c roughly corresponding to regions in which there
is minimal harmonic structure in the spectrogram in Figure 5-19a.

Clustering and Kalman Filtering Framework: Given the pruned candidates across time-frequency
regions, k-means clustering [44] was used to obtain local estimates in time. As our mixtures
contained all-voiced speech from two speakers, two centroids were extracted from pruned
candidates across all frequency bands at each time point. In contrast to clustering in Section
5.2.3, the present work performs clustering along both the pitch and pitch-derivative dimensions,
where the pitch-derivative estimate is that tied to the pruned pitch value. This method therefore
accounts for conditions where pitch values may be identical but pitch-derivatives may differ for
two speakers.
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To generate the pitch track for each speaker, each pair of centroids at a point in time were used as
observations to a pair of Kalman filters (KF) [45]. For each speaker i we adopt a state-space
model

=+,i = Ax , vt (5.17)
=t - !t+i,i + _Wt

where A = 1 , xt i [ (t, 1 is the true state, yt = [ (ti) is the centroid,
0 1 I afolt (t, i ' oafo/at (t, i)]

v and w are correspond to the model and observation noise terms of the state-space model,
respectively, and are assumed to Gaussian. Given the assignment of a centroid to a speaker, the
standard KF equations are used to generate the pitch track. In training, the covariances of E and

_wt are obtained using the optimal assignment of centroids on a training set of mixtures. We
define optimal as when the observation is closest in normalized distance to the true state. We
normalize each observation by the means and standard deviations of the set of pruned
observations at each time point and compute the geometric distance between the observation and
the true state. In testing, estimation from observations is done using two Kalman filters that
utilize the same parameters vt and wt obtained from the training data.

To perform assignment of the centroids to each speaker/pitch track in testing, we compute
distances between the predicted states of the two pitch tracks (corresponding to speaker 1 and
speaker 2) denoted as x^t,11t-1 and x,2It-1 and the two observations yt,a and Yt,b, all at time t.

Specifically, we define X1,a as

X1,a = (yZt,a - _Xt,11t-1) A~1tit-1 (2t,a - _X^X,11t-1) (5.18)

$t,jt-1 0 Yt,a

Figure 5-20. Assignment method with solid and dashed circles corresponding to distinct
pitch tracks and lines corresponding to distance metrics between observations and the
track.

where A-1tIt-1 is the covariance associated with the prediction at time t. The value of Xi,a is the
Mahalanobis distance [44] between the observation Yt,a and the predicted state from the Kalman
filter of speaker 1 t This metric represents how "likely" yt,a was generated from the

observation process of speaker 1 based on its predicted state. X1,b, X2,a, and X2,b are similary
defined.

To make the assignments, the minimum of X1,a and X1,b is used to make the assignment to
,1t-1; the same rule is applied for .,2It-1 but with X2,a and X2,b- If &jIt-1 and

acquire the same observation (e.g. if they both acquire Yt,a), the assignments are changed based

on the following criterion:
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if(X1,b + X2,a > X2,b + X1,a), assign Yt,b to t,2It-1 (5.19)
Otherwise, assign Yt,b to ge,1

The same rule is applied if .,1t-1 and _t,2|t--1 both acquire Yt,b but with Yt,a replacing Yt,b-
This assignment method uses individual uncertainties of predicted observations and the combined
uncertainty of both assignments to prevent pitch tracks from merging. Fixed-interval smoothing
(across the entire duration of the pitch track) is applied to the filtered estimates[45]. We refer to
the previously described method utilizing both pitch and pitch-derivative information in multi-
pitch estimation as method "fodfo/dt".

Reference Approach for Comparison: To assess the utility of the GCT's joint representation of
pitch and pitch-dynamics, we use a reference system that does not utilize afo/at explicitly. As
in the "f0_dfO/dt" method, candidates are pruned based on the Ifo - fo I > y criterion, but k-
means clustering is done using only the pitch values. In tracking, the state-space model of is
modified such that A = [1], xt,i = [fo(t, i)] is the true state, and yt,i = [fo(t, i)] is the centroid.
All other steps are identical to the proposed method. We refer to this reference method as
"foonly".

5.3.3 Data Set and Evaluation
For evaluation, a data set was collected consisting of 8 males (ml - m8) and 8 females (f 1 - f8)
speaking 8 all-voiced utterances (Table 5-3); data was sampled at 16 kHz. Speakers were
instructed to maintain voicing throughout each utterance. Reference (or "true") pitch values of
the sentences were obtained using Wavesurfer prior to mixing [38]. Speech files were pre-
emphasized at a 0-dB overall signal-to-signal ratio. To train the LDA-based pruning and Kalman
filters, mixtures generated from ml - m4 and fl - f4 speaking sl - s4 were used. In testing,
mixtures generated from m5 - m8 and f5 - f8 speaking s5 - s8 were used. Distinct speakers and
sentences were used in each mixture such that train and test sets consisted of 336 total mixtures
each. We further divided the test data into mixtures of separate and close pitch track conditions.
Close refers to mixtures where at least one time point contains a pair of pitch values within 10 Hz
of each other. This accounts for 136 mixtures, the majority of which contained either crossings,
or both crossings and mergings. The remaining 200 mixtures are considered separate.
Representative mixtures are shown in Figure 5-22 through Figure 5-27. As a quantitative metric
for performance, we use the root-mean-squared-errors metric defined in (5.7). Standard errors of
the RMSE values were also computed.

5.3.4 Results and Discussion

Figure 5-21 shows average RMSEs in both the separate and close datasets for the two described
estimation methods along with standard errors. In Figure 5-22 and Figure 5-23, we show the
results of separate cases comparing the two methods. Consistent with the quantitative results in

Figure 5-21 we see that "fo dfo/dt" exhibits similar performance to "fo-only" and obtains
reasonable estimates of pitch values. In contrast, observe that "fo dfo/dt" outperforms
"fo-only" in the close conditions with crossing and/or merging pitch tracks (Figure 5-24 through
Figure 5-27) due to both improved pitch candidate clustering and assignments. Nevertheless, an
outstanding limitation of "fo_dfo/dt" is when pitch tracks exhibit similar pitch values and pitch-
derivatives. As an example, observe that erroneous estimates are made by "fodfo/dt" after 800
ms in Figure 5-27, where the two pitch tracks are close in absolute frequency and have similar
slopes.
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Table 5-3. Table of all-voiced sentences for evaluating multi-pitch estimation.

s7 - "May we all learn a yellow lion roar."
s2 - "Why were you away a year, Roy?"
s3 - "Nanny may know my meaning."
s4 - "I'll willingly marry Marilyn."
s5 - "Our lawyer will allow your rule."
s6 - "We were away in Walla Walla."
s7- "When we mow our lawn all year."
s8 - "Were you weary all along?"

Average RMSE Values Across Methods + Conditions

26.55
[25.77,27.33]

T

20.22
[19.48,20.96]

T

16.86
[16.34, 17.381

fOdfO, close fO only close fO dfO, sep.
Methods + Coriditions

16.03
[15.56,16.56

fOonly, sep.

Figure 5-21. Average RMSE (Hz) (bars, bold) and standard errors [] across conditions and
methods.
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5.4 Conclusions
Results in this chapter on synthetic and real speech have demonstrated the utility of the GCT
framework for multi-pitch analysis and estimation. By jointly representing pitch and pitch-
derivative information from distinct speakers, the GCT can provide separability of pitch
information from distinct speakers in analysis. Specifically, the GCT can be viewed as a more
general signal representation for providing such separability with respect to traditional short-time
analysis methods. We have further shown that an algorithm explicitly exploiting this joint
representation can afford benefits in addressing the problem of close pitch trajectories in multi-
pitch estimation at crossings and mergings. Limitations of the current algorithm are in its in
ability to accurately estimate pitch values in conditions in which both the pitch value and pitch
dynamics are the same between the two speakers. Furthermore, to apply the present framework
to the general multi-pitch estimation problem, a method must be developed to account for
mixtures in which there is both voiced and unvoiced speech as will be discussed in Chapter 7.
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Chapter 6

Toward a Co-channel Speaker Separation
System Using 2-D Processing of Speech

In this chapter, we describe efforts toward developing a complete system for the example
application of co-channel speaker separation using the proposed 2-D signal models of Chapter 3
and Chapter 4. As in the previous chapters, our emphasis is on assessing the utility of the models
themselves for this task rather than developing a state-of-the-art speaker separation system. We
therefore highlight key difficulties encountered in the present development that limit the system
for application to speech mixtures satisfying certain constraints to be subsequently discussed.
Despite this limitation, our efforts nonetheless demonstrate that the GCT framework is a
promising one for this task and motivates several important future directions of research.

This chapter is organized as follows. In Section 6.1, we briefly describe the overall framework of
the system including a multi-pitch estimation and signal separation methods. Sections 6.2 and 6.3
describe these components in detail and highlight their limitations. Section 6.4 then describes our
evaluation of the method and presents our results. We conclude in Section 6.5 and briefly discuss
future directions.

6.1 Framework
A co-channel speaker separation system can be developed in the context of the GCT by utilizing
elements of the multi-pitch estimation procedure in Chapter 5 with the signal separation methods
of Chapter 3 and Chapter 4 (Figure 6-1). Overall, the system first obtains a set of multi-pitch
estimates and voicing decisions and then utilizes these in signal separation according to the 2-D
signal models proposed in this thesis. Subsequently, we discuss the development of both the
multi-pitch estimation and signal separation methods and highlight their limitations.
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Figure 6-1. Framework for GCT-based speaker separation system including multi-pitch
estimation (green) and signal separation (red) components.

6.2 Multi-Pitch Estimation
The general speech mixture case exhibits mixtures of voiced and unvoiced speech; in addition,
pitch trajectory crossings and/or merging may occur for voiced speech (Chapter 5). As discussed
in Section 3.5.1 this results in three mixture voicing conditions: voiced-on-voiced, voiced-on-
unvoiced, and unvoiced-on-unvoiced. A complete multi-pitch tracking system would 1)
accurately identify all three conditions, 2) estimate pitch values in the mixture when they are
present, and 3) assign pitch values to their corresponding speakers.

In this section, we first describe two important difficulties encountered in our current
development that led to the final multi-pitch estimation algorithm. Subsequently, we describe the
multi-pitch estimation algorithm itself. As a consequence of these limitations, this algorithm is
constrained to operating on speech mixtures in which 1) only two mixture voicing states
(unvoiced-on-unvoiced and voiced-on-voiced) are available at the output and 2) the underlying
pitch trajectories are assumed to be well-separated by pitch values alone.

6.2.1 Limitations of Existing Framework
Detection of Co-channel Mixture Voicing States: In relation to the multi-pitch estimation
algorithm described in Chapter 5, recall that the method can only be applied to speech mixtures
that are known a priori to be voiced-on-voiced. Detection of voicing either in the voiced-on-
voiced or voiced-on-unvoiced mixture condition is therefore required as either a preliminary or
integral component of a multi-pitch estimator for the general mixture condition containing voiced
and unvoiced speech. As will subsequently be demonstrated, detection of the presence of voicing
(i.e., either voiced-on-voiced or voiced-on-unvoiced) can be reasonably performed using standard
methods in voicing detection used for analysis of a single speaker. Nonetheless, detecting the
distinction between voiced-on-voiced and voiced-on-unvoiced is an outstanding challenge in the
co-channel speaker separation task [46][47] (Figure 6-2).
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Voicing Present?

Yes No

Two Voices Present? Unvoiced-on-Unvoiced

Yes No

Voiced-on-Voiced Voiced-on-Unvoiced

Figure 6-2. Decision-tree representation of mixture voicing conditions [46].

In our present development, we utilize a voicing detector (to detect presence of any voicing) as a
preliminary step followed by a simplifying assumption that any region determined to be voiced is
assumed to correspond to the voiced-on-voiced condition. Consequently, preliminary analyses
demonstrated that applying the Kalman filtering framework of Chapter 5 results in very poor
pitch estimates, presumably due to inaccurate tracking of pitch and pitch-dynamic values in
voiced-on-unvoiced conditions. As will subsequently be discussed, an alternative estimation
method using a simple k-means clustering method and pitch candidate pruning was applied. In
future work, we may incorporate existing methods such as nonlinear state-space modeling,
Bayesian classification, or GCT-based approaches to address this limitation[46] [47].

Ambiguity of Assignment Using Pitch and Pitch Dynamic Information: As a second limitation of
the current framework, we consider the mixture voicing condition of voiced-on-voiced.
Assuming for now that detection of this condition is either known/detected a priori, we
demonstrate by "counterexample" that pitch and pitch dynamic information alone are insufficient
to address the general multi-pitch problem in the presence of unvoiced speech regions.

12 3

Time

Figure 6-3. Schematic of pitch trajectories of two speakers (dashed and solid lines) in the
presence of unvoiced regions (shaded grey) across three regions (1-3); optimal assignments
based on either pitch value alone (blue) or pitch dynamic information (red).

In Figure 6-3, we show schematized pitch tracks of two speakers in the presence of unvoiced
regions with crossing pitch trajectories. In Region 1 note that pitch and pitch dynamics combined
can be used to group pitch values to distinct pitch tracks (as in Chapter 4). Upon reaching the
subsequent unvoiced region, there will exist ambiguity in relating pitch tracks in Region 1 with
those in Region 2. The optimal assignment shown in this transition is based on the proximity to

137



the pitch values themselves. Note that the incorrect assignment would be made if we grouped
speakers based on pitch dynamics in Region 1. Continuing to Region 2, observe that pitch and
pitch dynamic again may be used to track the two pitch tracks accurately. However, following
the unvoiced region between Region 2 and 3, the optimal assignment in transitioning from
Region 2 to Region 3 is based on using only pitch dynamics; using pitch information alone would
lead to the incorrect assignment. The present example demonstrates therefore that pitch and pitch
dynamic information alone (e.g., as represented in the GCT) are insufficient features in addressing
the general multi-pitch estimation problem. This example further generalizes to conditions in
which the pitch and pitch dynamics of a speaker are similar within a time span as highlighted by
Figure 5-27 in Chapter 5.

As a consequence of this limitation, the multi-pitch estimation algorithm in our present
development is therefore constrained to operate on speech mixtures that have pitch trajectories
well-separated by the pitch values themselves. To address this limitation, one possible area of
future work is to combine pitch and pitch dynamic content with estimated spectral characteristics
estimated for individual speakers (e.g., formant structure) for use in grouping. For instance,
while pitch and pitch dynamic information leads ambiguity in assignment in the example
presented, the general spectral envelope (e.g., an average) of the distinct speakers may remain
constant across all three regions in Figure 6-3.

6.2.2 Multi-Pitch Estimation Algorithm
In our previous discussion, we have highlighted two important difficulties in multi-pitch
estimation in relation to the existing Grating Compression Transform-based processing
framework. As a consequence of these limitations, we describe in this section a simple multi-
pitch estimation algorithm that is restricted in two ways. First, its outputs in terms of mixture
voicing conditions consist only of the unvoiced-on-unvoiced and voiced-on-voiced cases. In
addition, the algorithm can be readily applied only to speech constrained to have pitch values that
are well-separated based on pitch values alone (i.e., without crossings and/or merging of the pitch
trajectories).
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Final-+ -+ Pitch
Estimates

Figure 6-4. Schematic illustrating steps in multi-pitch estimation algorithm.

In Figure 6-4, we show a schematic of the multi-pitch algorithm developed starting with voicing
detection of the mixture signal as well as establishing an initial set of pitch estimates using the
Wavesurfer software package [38]; this first step further provides a segmentation in time of the
waveform between regions of voiced speech and unvoiced speech. Denoting N, as the number of
voiced regions, we perform pitch candidate extraction and pruning from the GCT and fuse pitch
estimates from the GCT and the initial pitch estimates through a pitch-based grouping to the final
pitch estimates for each individual speaker. We describe these steps subsequently in detail.

Wavesurfer-based Voicing Detection and Initial Pitch Estimates: In the first step, we apply a
single pitch tracker to obtain an estimate of regions of voicing versus unvoiced regions as well as
an initial set of pitch estimates. Specifically, we apply the Wavesurfer pitch estimation procedure
to the mixture waveforms. Wavesurfer obtains estimates of pitch and voicing using correlation-
based analysis followed by dynamic programming as described in [48]. A representative estimate
arising from this on a female-male mixture is shown in Figure 6-5a; we denote the true female
and male pitch tracks as foj [n] and fo,m [n] and the estimate as fo,, [n]. Observe that the pitch
estimator obtains accurate pitch values of individual speakers within distinct time regions but
exhibits "jumps" between speakers; this is effect is due to the dominance of individual voiced
speakers in distinct time regions. In addition, observe that despite the presence of two speakers,
the pitch estimator nonetheless accurately detects the presence of voicing; here, voicing refers to
when either the voiced-on-voiced or voiced-on-unvoiced mixture condition occurs. To illustrate
this voicing detection, we show in Figure 6-5b a plot of

ve [n] = 1, fo,,[n] > 0; 0, otherwise (6.1)
v[n] 1, fo,[n] > 0 or fo,m[n] > 0; 0, otherwise (6.2)
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Figure 6-5. (a) Pitch estimates (green, '*') from a single pitch estimator (Wavesurfer) on a
mixture signal of two speakers (red and blue); (b) Voicing detection as determined by
presence of pitch value (green, '*') and true voicing of mixture (maroon).

Quantitatively, v, [n] provides a good match to the true voicing state using an accuracy metric

Accuracy = 100 Nmatch (6.3)

where N is the length of v[n] and Nmatch is the count of v[n] = ve[n]. Similar observations
were observed on other mixtures. More specifically, an average accuracy across all the data

Fusion to Obtain Final Pitch Estimates: In the next step of multi-pitch estimation, GCT analysis
is performed on the narrowband spectrogram of the mixture to obtain the refined pitch estimates.
Specifically, we define a voiced region in time from v, [n] in the previous section as any subset of
time points where v, [n] = 1. This rule results in a set of N, voiced regions.

We perform GCT analysis in each voiced region in time by extracting pitch values and features
identical to those described in Section 5.3.2 using a narrowband spectrogram. Similarly, the set
of pitch values are pruned as in Section 5.3.2 using a bandwise linear discriminant classifier
applied across time. Finally, using the set of pruned pitch candidates denoted as fo,cands[n], we
obtain pitch tracks within each voiced region using a simple assignment method for each point in
time. Specifically, k-means clustering is first performed on the non-zero pitch values of the
initial pitch estimates from Wavesurfer (i.e., fo,,[n]) to obtain two centroids clo, and chigh
corresponding to the estimated pitch tracks fhigh,, [n] and flow,e [n]. Subsequently, for each point
in time, we assign the value of fo,, [n] to either fhigh,e[n] or fow, [n] based on

min (Ifo,,[n] - clow|,I foeIn] - chigh 1) (6.4)
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where min is performed with respect to either the low or high pitch centroids (corresponding to
the pitch tracks fighxe[n] and fow,,[n]). For illustrative purposes, assume that fo,,[n] is
assigned to flow,e [n]. Then, we set fhigh,e [n] equal to

figh,e [n] = mean (fo,cands-high[n]) (6.5)

where the set fo,cands-high[n] is the set of pruned pitch values closer in absolute distance to
Chigh than clo0 .

The described method is performed across all voiced regions to obtain pitch estimates of the
individual speakers. All unvoiced regions (i.e., when v, [n] = 0) are set to zero. In Figure 6-6a,
we show pitch estimates obtained at each point in time based on the described multi-pitch
estimation method. Observe that these tracks correspond reasonably well to the true pitch tracks
in voiced regions. Nonetheless, the current method has two primary limitations. First, due to the
voicing decision reference accounting for both the presence of either two voices or a single voice,
estimates can often be erroneous in obtaining pitch estimates when the true pitch track is
unvoiced (e.g., compare high pitch track at time -150 with the estimate). Furthermore, the
current method cannot account for pitch trajectories that are merged/crossing due to its reliance
on pitch values in assignment.
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Figure 6-6. (a) True pitch tracks of high- (red) and low-pitched (blue) speaker; (b)
Estimates of high (red) and low (blue) pitch tracks.

6.3 Signal Separation
As previously discussed, the developed multi-pitch tracker classifies voicing mixtures as either
voiced-on-voiced or unvoiced-on-unvoiced for mixtures along with pitch estimates. The voiced-
on-unvoiced condition is omitted. To utilize these estimates in signal separation, we apply the
demodulation techniques described in Chapter 3 and Chapter 4 for the narrowband and wideband
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GCT representations. Specifically, pitch estimates of individual speakers are mapped to the GCT
domain for use in demodulation and least-squared-error (LSE) fitting to the mixture spectrogram,
thereby resulting in spectrogram estimates of the individual speakers. We refer the reader to
details of these methods in previous chapters and briefly summarize here the overall approach for
the full separation system as well as motivate modifications to the algorithms. In addition to the
individual narrowband and wideband estimates, we also perform fusion of the waveforms
according to the simple linear weighting as in Equation (4.44).

Narrowband Algorithm: Due to the multi-pitch estimates representing only the voiced-on-voiced
and voiced-on-unvoiced voicing mixture conditions, the case of voiced-on-unvoiced is in fact
"hidden" within the time points labeled as voiced-on-voiced. The direct and exclusion/re-
estimation methods described in narrowband-based separation (Section 3.4) can therefore be
expected to "enforce" harmonic structure in the spectrogram estimate for the unvoiced speaker if
the underlying mixture voicing condition is voiced-on-unvoiced.

n

fOf

Figure 6-7. (a) Schematic illustrating local time-frequency region containing two voiced
speakers (red and blue); (b) GCT representation of (a) with mapped carrier positions
(shaded) and candidate positions ('+') from peak-picking; mapped positions are reassigned
(green arrows) to candidate positions based on distance; terms near the GCT origin (hollow
red and blue) are overlapped according to the signal model (see Section 3.4); (c) local time-
frequency region with voiced (red) and unvoiced (blue) speaker; (d) GCT of (c) indicating
mapped harmonic locations for the red speaker and blue speaker; the blue speaker
mappings are incorrect due limitations in multi-pitch estimation.; reassignment results in
the blue speaker carrier positions resembling a noise carrier.

In an attempt to avoid this effect, for narrowband-separation, we perform bootstrapping for the
nominally labeled voiced-on-voiced cases as was done for the wideband-based separation method
(Section 4.6.2). Figure 6-7a and b schematizes this approach. A set of directly mapped carrier
positions obtained from pitch and pitch dynamic mappings are initially obtained. In addition, an
alternative set of carrier positions obtained from peak-picking are also made available.
Subsequently, each directly mapped position is reassigned to a position obtained from peak-
picking through an iterative method that minimizes the distance between the mapped and peak-
picked positions (Section 3.2.2). By reassigning carrier positions to those obtained from the GCT
itself (rather than the directly mapped positions), a set of carrier positions for an individual
speaker can be reassigned to correspond to those of a noise carrier in the voiced-on-unvoiced
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case as shown in Figure 6-7c and d. Consider for instance Figure 6-7a and b, in which two
voiced speakers (red and blue) are indeed present in the local time-frequency region as indicated
by two sets of harmonic line structure. Bootstrapping in this case will result in reassignment of
the mapped carrier positions to those that are located near the mapped positions. In contrast, in
Figure 6-7c and d, the local time-frequency region corresponds to the voiced-on-unvoiced case
with the red speaker being voiced while the blue speaker is unvoiced. Due to limitations of the
multi-pitch tracker, however, a set of harmonically related positions will be generated that reflects
"voicing" by the blue speaker. Nonetheless, in reassignment of the carrier positions, the blue
speaker can be appropriately assigned to carrier positions reflecting the speaker's underlying
unvoiced component as a noise carrier.

Wideband Algorithm: In the wideband representation, we similarly apply the identical steps as in
Section 4.7.3 in using the bootstrapping method for assignment and estimation of carrier
positions. In the voiced-on-voiced condition, pitch values are first mapped to the GCT space
followed by an iterative algorithm to reassign carrier locations from peak-picking to the mapped
locations (Section 4.7.3).

In both the narrowband and wideband separation approaches, in the unvoiced-on-unvoiced
condition, we perform an least-squared error (LSE) fit to the data and assign half the amplitude of
the fit to each speaker as was done in both Section 3.4 and Section 4.6.2. Finally, in fusion, we
use the simple linear weighting method with a = 0.41 as in Section 4.6.2.

6.4 Evaluation
Data and Evaluation Criteria: As previously discussed, limitations of the multi-pitch algorithm
constrain its applicability to speech mixtures in which the underlying pitch tracks are well
separated based on the pitch values alone. We use for our data only the male and female mixtures
described in Chapter 3 to better satisfy this constraint. Our results are evaluated quantitatively
using the global SNR values relative to 0 dB signal-to-signal ratio as in Section 3.5.3.

Results: In Figure 6-8, we show spectrograms of an example mixture and the two true targets. In
Figure 6-10 and Figure 6-11, we show spectrograms of the wideband, narrowband, and fusion
estimates for the target male and female speakers, respectively. From these results, we observe
that despite incomplete and potentially erroneous pitch estimates, the bootstrapping signal
separation method is capable of suppressing interfering speakers for both the male and female
targets. Presumably, bootstrapping allows for carrier positions to be more accurately determined
despite pitch estimation errors. Quantitatively, Table 6-1 shows average SNR gains of these
methods for male and female targets 3-4 dB for both methods alone; in addition, we list the
values obtained in separation using prior pitch information as in Table 3-2 and Table. 4-4.
Consistent with our previous results in Chapter 4, fusion of the methods results in gains in SNR
above 4 dB. In informal listening, estimated waveforms exhibited similar reconstruction quality
of the target speaker, though with less suppression of interfering speakers than in waveforms
from separation using prior information consistent with the -2 dB reduction in SNR.
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(a) Mbuhe

Time(n)
(b) Female

Time (n)
(c) Male

Figure 6-8. (a) Mixture of female ("Forty-seven states assign or provide vehicles for
employees...") and male utterances ("He drove essential patterns off, carefully shaving his
long upper lip."); (b) original female target; (c) original male target;

(a) Reference Pitch Values
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(b) Estimated Pitch Values

Figure 6-9. (a) Reference and (b) estimated pitch values for female (red), male (blue)
mixture.
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Figure 6-10. Estimates of male target obtained from (a) narrowband, (b) wideband, and (c)
fusion.

(a) Female Est - Narrow

(b) Female Est - Wide

Time (n)
(c) Female Est - Fuse

Time (n)

Figure 6-11. Estimates of female target obtained from (a) narrowband, (b) wideband, and
(c) fusion.

Table 6-1. Average SNR gains (relative to 0 dB) and associated errors of full separation
system.

Narrowband Wideband Fusion Prior Pitch (Fusion)
Female 4.28 [0.13] 2.79 [0.15] 4.42 [0.14] 6.55 [0.14]
Male 3.62 [0.14] 3.55 [0.12] 4.46 [0.10] 6.35 [0.10]
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6.5 Conclusions
In this chapter, we have discussed development toward a complete system for co-channel speaker
separation. A multi-pitch estimation algorithm was developed by fusing an initial set of pitch
estimates obtained from a standard speech analysis tool in conjunction with GCT-based pitch
estimates. The pitch estimates are used in signal separation by applying demodulation techniques
in the GCT domain to account for inaccuracies of the pitch estimates. Though application of our
multi-pitch estimation method is restricted, the present results further demonstrate the GCT's
ability to represent speech content as well as its promise as a signal representation for the co-
channel speaker separation problem. As previously discussed, limitations of the current approach
can be explored in future work to further improve the system. Specifically, a more sophisticated
voicing mixture condition detector can be incorporated into the existing framework; in addition,
alternative grouping mechanisms for speakers in pitch tracking (in addition to pitch and pitch
dynamics) may be used to address ambiguity of pitch value assignment in multi-pitch tracking.
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Chapter 7

Conclusions and Future Directions

7.1 Contributions

Speech-signal modeling and processing has traditionally been performed using short-time
analysis methodologies that analyze temporally local spectral content of a speech waveform. In
this thesis, we have proposed a class of signal models in an alternative framework using two-
dimensional processing (2-D) of speech. Analytically, our models arise out of interpreting
fundamental speech production properties such as pitch, pitch dynamics, and formant structure
(both stationary and dynamic), and onset/offset content (e.g., voicing onset) in local time-
frequency regions of the canonical wide and narrowband spectrograms. The resulting models for
both cases are viewed analytically through sinusoidal-series amplitude modulation. In developing
the model, we have therefore provided an explicit interpretation of the concept of "modulation" as
represented in spectrograms. This is in contrast to existing approaches that have interpreted
"modulation" either qualitatively through phenomenological analyses or data-driven machine
learning methods (Chapter 2).

As an interpretive framework, the modulation model views production properties such as pitch,
pitch dynamics, noise source, and (under certain conditions) formant bandwidth in a sinusoidal
series carrier. In modulation, this carrier is modulated (i.e., multiplied) by a local envelope
representing formant structure, formant dynamics, and onsets/offsets. Here, our interpretation of
"local" refers to analysis within small time-frequency regions of the spectrogram. In the
corresponding GCT space, modulation results in distribution of copies of envelope structure in
either an ordered fashion (i.e., in voiced speech) or without ordering (i.e., in noise.). In
developing this model, we have highlighted its properties and limitations through simulations on
synthetic speech and real speech examples. Furthermore, we have demonstrated its ability to
represent a variety of speech content through spectrogram reconstructions. Additional evidence
for this was presented in demonstrating its applicability to the co-channel speaker separation
problem in multi-pitch analysis/synthesis, signal separation and reconstruction, and a simple
preliminary separation system.

7.2 Research Issues
A number of outstanding research issues remain in the context of this thesis. In this section, we
describe several important issues that may be addressed in future work in relation to modeling
and representation (Section 7.2.1) and the co-channel speaker separation task (Section 7.2.2).

7.2.1 Modeling and Representation
Modeling Limitations: This thesis has derived a set of models for local time-frequency regions of
the canonical narrowband and wideband spectrograms. While empirical results have
demonstrated the ability of these models to accurately represent speech, we have also highlighted
through simulations their limitations. As one example of our models' limitations, models of
voiced speech for narrowband models were shown to provide reasonable mappings of pitch and
pitch dynamic information in the GCT space (Figure 3-5). Nonetheless, the limiting assumption
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of local regions reflecting parallel harmonic lines was implied to cause errors in this mapping.
Further investigation is necessary to formulate an improved model of dynamic pitch content from
an analytical perspective. For instance, one potential direction is related to preliminary
simulations performed in [16], in which it was demonstrated empirically that the 2-D "fanned"
harmonic line structure could be reasonably well-modeled using a 2-D chirp-like function with an
exponentially decaying basis along time and a sinusoidal basis along frequency. Similarly, in
relation to the wideband models, the current model for incorporating dynamic formant content
was derived under relatively strict conditions (see Section 4.9). Despite its consistency with
empirically observed behavior on synthetic vowels (see Figure 4-10), further investigation is
needed to provide a model for dynamic formant content that is less restrictive in its region of
validity.

Another fundamental modeling issue is that the derived models have been exclusively developed
in the spectrogram magnitude domain. Consequently, in signal processing applications such as
co-channel speaker separation, we have had to invoke linearity assumptions of the magnitude
spectrogram. Further investigation is required to better understand the role of the short-time
Fourier transform (STFT) phase in the context of a 2-D processing framework.

Choice of Short-time Analysis Windows and Region Sizes in Representation: Throughout this
thesis, we have employed fixed-size analysis windows in both short-time Fourier analysis to
generate the STFTs and corresponding spectrograms as well as fixed-sized local time-frequency
regions for GCT analysis. While the choice of window/region sizes can be motivated from
analytical as well as empirical findings, we briefly describe here areas of future research in
relation to these choices.

In the short-time analysis domain, we chose window sizes to match the canonical narrowband and
wideband spectrograms, as these are the most commonly used time-frequency distributions in
speech analysis. Nonetheless, further investigation is needed to explore more carefully the effects
of this choice of window. In Figure 7-1 through Figure 7-4, we show the effects of varying the
analysis window length in analyzing a periodic impulse train with pitch of 150 Hz. The window
length begins in Figure 7-1 at 50 ms corresponding distinctly to a narrowband spectrogram and
decreases through to Figure 7-4 to 1 ms corresponding to a wideband spectrogram. In Figure 7-3,
observe that an "intermediary" case between narrowband and wideband representations can be
observed in both the spectrogram and the GCT domain, thereby providing analysis of multiple
resolutions. Specifically, the spectrogram exhibits both vertical and horizontal grating patterns in
the time-frequency space while the GCT correspondingly contains peaks along both the vertical
and horizontal axes. Similar observations were also made using this analysis procedure for a
Gaussian white noise sequence in which components along the fl-axis in the GCT were observed
for a narrowband representation and transitioned to components along the v-axis for a wideband
representation. Further investigation is necessary to assess the meaning of these effects and their
potential application for speech analysis through multi-resolution analysis (e.g., as in the auditory
spectrogram).

In the GCT domain, the local region size was similarly motivated from analytical and empirical
findings. Nonetheless, as can be shown in Appendix A, improvements in analysis/synthesis using
adaptive local region sizes can be obtained using a "goodness metric" in relation to the
underlying signal model. Though the results in Appendix A demonstrate only a small gain in
analysis/synthesis, we believe that this adaptive framework can provide benefits in signal
processing applications such as speech enhancement.
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(a) Spectrogram of Pure Impulse Train (150 Hz Pitch), Window = 50 me
8000 8001

(b) Local Reaion

Time (mm) Time (mm)
(c) GCT Org. (d) GCT (DC Removed)
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Figure 7-1. (a) Spectrogram of pure impulse train with 150-Hz pitch using a short-time
analysis window of 50 ms (frame rate of 0.5 ms); (b) local region extracted for analysis; (c)
GCT of (b); (d) GCT of (b) but with DC components removed for display purposes.

(a) Spectrogram of Pure Impulse Train (150 Hz Pitch), Window = 26 ms
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Figure 7-2. As in Figure 7-1 but for window of size 26 ms.
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Figure 7-3. As in Figure 7-1 but for window of size 13 ms; observe in (c) and (d) components
oriented along both the horizontal and vertical axes.

(a) Spectrogram of Pure Impulse Train (150 Hz Pitch), Window = 1 ms (b) Local Region

Time (me) Tine (me)
(c) OCT Org. (d) OCT (DC Removed)
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Figure 7-4. As in Figure 7-1 but for window of size 1 ms.

7.2.2 Co-channel Speaker Separation
In co-channel speaker separation, we have described in Chapter 6 a preliminary full system based
on combining multi-pitch estimation and signal separation algorithms based on the GCT and the
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standard pitch estimation algorithm (for single speakers) of Wavesurfer. As described in that
chapter, two important issues must be addressed to develop a system capable of handling more
general speech mixture conditions, particularly in relation to multi-pitch estimation. First,
detection of the voiced-on-voiced versus voiced-on-unvoiced must be performed to ensure
accurate determination of voicing mixture conditions; this step is crucial in both multi-pitch
estimation and signal separation. A GCT-based approach for achieving this is schematized in
Figure 7-5 based on detection of components in the GCT space along similar orientations. Note
that this approach can be further generalized to perform detecting an arbitrary number of speakers
present in a local time-frequency region of the spectrogram if it is known a priori that voicing
exists in the region. Second, despite the ability of multi-pitch estimation using the GCT to obtain
accurate estimates of "separate" and "close" voicing mixtures, an outstanding limitation is that
both the pitch and pitch-dynamic cues used in the GCT approach are not sufficient to address the
more general condition of speech mixtures with similar pitch values and in the presence of
unvoiced regions (Figure 6-3). As suggested in Chapter 6, one approach could be to utilize
alternative grouping cues such as spectral envelope to group individual speakers under these
conditions.

(
(a) (b)

U

n

Figure 7-5. (a) Schematic of local time-frequency region of spectrogram containing two
voiced speakers (blue and red); (b) GCT of (a) showing envelope replicas at distinct
locations in the GCT space; detection of ordered components along the same orientation
(green ellipses) may be used to used to detect the voiced-on-voiced voicing mixture condition
as well as the number of speakers.

In addition to multi-pitch estimation, one outstanding issue in separation is that of mixtures of
unvoiced speech (i.e., the unvoiced-on-unvoiced speech mixture condition). Due to the ambiguity
of assignment in carrier positions to distinct speakers (see Chapter 3 and Chapter 4), our present
development heuristically assigns half the amplitude of these local time-frequency regions to each
speaker. A more sophisticated approach is to utilize the distributive nature of envelope replicas in
the GCT domain (Figure 7-6). For instance, spectral matching approaches performed in the GCT
domain could conceivably group envelope components of similar shape and orientation located at
distinct locations to distinct speakers. An outstanding challenge in this approach, however, is the
assignment of these groupings to individual speakers' pitch tracks for estimating their
corresponding spectrograms.
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(a)
(b)
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Figure 7-6. (a) Schematic of local time-frequency region of a narrowband spectrogram
consisting of two unvoiced speakers, one with spectral shaping along ) (red) corresponding
to e.g., a fricative and another along time (red) corresponding to a voiceless stop onset; (b)
GCT of (a) showing distribution of envelope content along fi. Observe that the envelope
structures will be distinct in their orientation, which may be used for grouping of envelope
components to distinct speakers.

7.3 New Directions
In this thesis, we have related the two-dimensional (2-D) GCT representation to fundamental
properties of speech such as pitch, pitch dynamics and formant structure; in addition, we have
briefly explored the mapping of noise content in the GCT domain. Consequently, the GCT
framework has potential application in a variety of other speech signal processing tasks in
addition to co-channel speaker separation as explored in this thesis. In this section, we describe
several of these ideas as motivation for future work in speech analysis (Section 7.3.1), speech
enhancement (Section 7.3.2), speech modification (Section 7.3.3), and speech parameter
estimation (Section 7.3.4).

7.3.1 Speech Analysis Using 2-D Processing
The narrowband and wideband spectrograms are often viewed as the "canonical" time-frequency
distributions from which others may be derived. Indeed, alternative distributions for representing
speech are often viewed as "mixtures" of narrowband and wideband spectrograms. For instance,
the auditory spectrogram is often viewed as being narrowband and wideband in the high and low-
frequency regions, respectively. Another example of such a "mixture" is probabilistic latent
factor analysis [40] in which the narrowband and wideband spectrograms are more explicitly
"mixed" to form an alternative representation. The signal models derived in this thesis in local
time-frequency regions could be applied to interpret such "mixtures" of the canonical and
narrowband and wideband spectrograms.

Furthermore, the 2-D models in the corresponding GCT space developed in this thesis may also
have implications in interpreting other 2-D processing approaches, such as the 2-D auditory
model proposed in [42]. Indeed, preliminary work in [16] showed that the auditory representation
did not provide a "coherent" representation of pitch and formant content as in the GCT
representation. Models developed in this thesis could help in better interpreting these
representations, particularly in relation to the multi-resolution property shown in Figures 7-1
through 7-4.

152



7.3.2 Speech Enhancement
Based on our understanding of where noise maps in the GCT space (e.g., Figure 3-8), one
potential application of the GCT is speech enhancement. Consider for instance, the narrowband
GCT representation of speech with additive interfering noise. Assuming again the linearity of the
spectrogram magnitudes of speech and noise components in a mixture, analyzing a local time-
frequency region according to the set of models results in an overlap of noise and speech content
in the time-frequency space. Nonetheless, in the GCT space, the distribution of noise content
along the 11-axis may be exploited for enhancement. In particular, demodulation may be
performed as in the co-channel speaker separation case to estimate the near-DC regions of the
GCT containing the envelope of the speech component (Figure 7-7).

(a) Ao

W (b) .

-p

Figure 7-7. (a) Local time-frequency region of narrowband spectrogram computed for a
single voiced speaker (red) with additive noise (blue); (b) GCT representation of (a)
indicating overlap of components near GCT origin and also at carrier positions. Removal
of near-DC components (green 'x') followed by demodulation of non-overlapped envelope
components of voiced speech (green rectangle) could lead to enhancement.

7.3.3 Speech Modification
As emphasized throughout this thesis, the GCT-based signal models are based on an explicit
mapping of basic speech parameters such as pitch, pitch dynamics, and formant structure to the
GCT space. Consequently, another application of the models is in speech/voice modification. As
a simple example, consider in Figure 7-8a and b the narrowband GCT representation of voiced
speech. To modify the local time-frequency region to reflect an alternative desired/target pitch
value and pitch dynamics, a simple algorithm could be based on first removing the replicas of the
envelope content at the original carrier positions followed by multiplying the envelope
component by a new set of carriers. Alternatively, in the wideband case, a simple algorithm for
modifying the bandwidth of voiced speech could be to change the peak weights of carrier
components as shown in Figure 7-8c and d.
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Figure 7-8. (a) Local time-frequency region of narrowband spectrogram of original voiced
speech (red) and desired/target harmonic structure reflecting new pitch value and pitch
dynamics (blue); (b) GCT of (a) showing removal of original carrier positions (green 'x')
and desired carrier locations (blue hollow) of envelope; (c) Local time-frequency region of
wideband spectrogram of original voiced speech (red) and desired/target temporal grating
pattern reflecting formant bandwidth (blue dashed); (d) GCT of (c) showing envelope
components at GCT origin and original carrier positions; modification of coefficient
weights along v-axis to change bandwidth of speech (blue dashed).

(aa
(b)

Figure 7-9. (a) Localized region of time-frequency region of narrowband spectrogram of
voiced speech; (b) GCT of (a) with isolation of near-DC region corresponding to envelope
(i.e., formant) (green rectangle) and peaks (green '*') for estimation of pitch and pitch
dynamic information; (c) localized region of time-frequency region of wideband
spectrogram of voiced speech; (d) GCT of (a) with peaks of multiple carrier positions to
extract formant bandwidth content.
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7.3.4 Speech Parameter Estimation
An alternative application to exploiting the GCT's representation of speech parameters is in their
analysis and estimation. Indeed, in previous work [19], we showed that the narrowband GCT
could be used to obtain improved formant frequency estimates of speech, particularly in
conditions of high-pitch source signals. Specifically, envelope components at the GCT origin
were separated from effects of the underlying pitch in based on both pitch values and pitch
dynamics. Building on this work, we may also perform estimation of dynamic formant content
using a simple approach of low-pass filtering in the GCT domain as shown in Figure 7-9b.
Previous discussion in this thesis has also motivated estimation of pitch and pitch dynamic
content from the narrowband GCT for single speakers based on location and orientation of carrier
components in the GCT domain (see Section 5.2.1) (Figure 7-9b). Finally, estimation of speech
parameters can also be performed using the wideband GCT in relation to formant bandwidth and
pitch (Figure 7-9d).
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Appendix A

Adaptive 2-D Processing of Speech

A.1 Introduction
In all of our described efforts using the Grating Compression Transform (GCT), we have
assumed a uniform tiling (Figure 2-4) of the GCT space as a function of the frequency and time
widths used in local region analysis. Region sizes were chosen based on analytical and/or
empirical observations and held constant in processing such as analysis/synthesis of
spectrograms. Herein we discuss an extension to our framework in adaptive GCT processing of
speech. In particular, we aim to illustrate the feasibility and effect of adaptively modifying the
local region sizes for GCT analysis as inspired by evidence for adaptation of receptive field
tuning observed in mammalian behavioral tasks [49].

The overall general 2-D framework with adaptation is shown in Figure A-1. More specifically,
we develop a method to adaptively "grow" local regions for the GCT based on a quantitative
metric that assesses the relative "salience" of the proposed signal model in each localized region;
this adaptation therefore allows for distinct resolutions of the GCT analysis based on the signal
analyzed. In our analyses, we consider exclusively the narrowband GCT representation;
nonetheless, due to the sinusoidal-series modulation interpretation of both narrow and wideband
GCTs, similar principles may be applied to the wideband representation in future work.

2-0 Signal
Time-frequency Distribution 4 Representation

AcousticSignal

Time
Figure A-1. 2-D Processing framework with time-frequency distribution, 2-D signal
representation, and signal adaptivity.

A.2 Motivation
As motivation for adaptation, consider four synthetic signals shown in Figure A-2: Synth1 - a
pulse train with rising pitch (150 to 200 Hz), Synth2 - a pulse train with fixed pitch of 200 Hz,
both exciting a formant structure, Synth3 - Gaussian white noise, and Synth4 - a single impulse.
The formant structure contains formant frequencies (bandwidths) of 669, 2349, 2972, 3500 Hz
(65, 90, 156, 200 Hz). We perform analysis/synthesis on these waveforms using a method similar
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to that described in Section 3.2 in spectrogram reconstruction. As a distinction in methodology,
carrier positions are obtained using peak-picking of GCTs computed on local regions of the log
spectrogram. As described in Section 5.3, the log operator has an effect of "flattening" the
spectral envelope; as will subsequently discussed, this effect is used to derive a quantitative
metric used in adaptation. Local region sizes were varied in time ranging from 20 to 50 ms in 2-
ms steps while in frequency from 625 Hz to 1000 Hz in 62.5-Hz steps. As a quantitative metric
for comparison, we compute the global signal-to-noise ratio (SNR) between the original and
resynthesized waveforms.

(a) Synth1 - Vowel, Pitch 200->250 Hz (b) Vowel, Pitch 150 Hz

60

S40

E 20
U.

9U DU ou IUU ZU 4U VU a
Time (ms) Time (me)

(c) Synth3 - Noise (d) Synth4 - Impulse

C 4
M6

Time (ms)
40 60
Time (ms)

Figure A-2. Spectrograms of Synth1 through 4; (a) Synth1 - vowel with rising pitch; (b)
Synth2 - vowel with fixed pitch; (c) Synth - noise;,(d) Synth4 - single impulse; white and
black boxes denote the extremal local region sizes; log spectrograms shown for display
purposes.

Table A-1. Signal-to-noise ratios (dB) using distinct fixed region sizes (time - ms by
frequency - Hz) with series-based analysis/synthesis. Optimal region sizes for each signal
are indicated in bold along the diagonal.

Size/Signal Synthi Synth2 Synth3 Synth4
20 ms by 625 Hz 6.95 4.66 7.40 16.37
42 ms by 625 Hz 6.60 4.76 6.02 3.86
20 ms by 687.5 Hz 6.60 4.55 7.45 16.78
20 ms by 812.5 Hz 6.58 4.31 6.91 18.86

Table A-i lists SNR values for all four signals across four distinct regions sizes. These sizes
correspond to those that maximized the SNR for each distinct signal such that the diagonal of the
table are the maximal SNR values in resynthesis. Observe from these results that four distinct
sizes are obtained for each signal. Furthermore, a sub-optimal selection of the region size for
distinct signals can result in substantial SNR degradations (e.g., the optimal size for Synth2 leads
to an SNR of 3.86 dB for Synth4, -15 dB below the optimal size for Synth4). These results
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demonstrate that a "fixed tiling" of 2-D space exhibits limitations in reconstruction based on
distinct properties of the signal itself.

A.3 Adaptation Algorithm and Analysis/Synthesis
The previous discussion motivates an adaptive "tiling" of the 2-D analysis space based on
properties of the signal and region analyzed. Analogous techniques have been developed in the
adaptive short-time analysis literature and typically compute a local metric indicating a measure
of stationarity (e.g., "spectral kurtosis" [50]). An alternative metric based on the "relative
salience" of 2-D carrier frequencies in the GCT with respect to the rest of the GCT content. We
reason that this metric quantitatively assesses the extent to which the series-based 2-D amplitude
model is valid for a given region. We then use this metric to guide an adaptive region-growing
and selection method. In preliminary analyses, we observed that an analogous 2-D spectral
kurtosis did not result in improvements in adaptive processing relative to the proposed "salience
ratio".

Let Slog [n, m] (Slog-hp [n, m]) denote a local region of the narrowband log-spectrogram (high-
pass filtered) for a given signal such that its corresponding GCT is Siog (to, fl) (Slogyhp (W, 1)).

The dominant peak of the S1og p (o, fi) (|Siog.-hp (cod, fd) |) magnitude is used to derive the
carrier parameters ws, 6, and ilk of a 2-D sinusoid denoted as c1 [n,i m]. The resulting sinusoidal
carrier c1 [n, m] is scaled such that its GCT magnitude IC1 (), fl) I has a dominant peak value of
|Slog-hp(Wd, d)|. Additional carriers (for both voiced and unvoiced) speech are obtained by
scaling the carrier parameters as in Chapter 3. We define a "salience ratio" (SR) as the ratio of
following energies

SR = 10log o (A. 1)
ffs,SlOg(W,n)| 2 ddfl-Ec

Ec= ffkZ=1|ck(of)|z dwd1l (A.2)

Ec is the energy difference in the local region of the original (non-filtered) narrowband
spectrogram and the carriers and N is the number of carriers. This metric relates the relative
energy contributions of the carrier positions in the signal model to the overall region analyzed.

(a) (b)

Tme me
Figure A-3. (a) Base tiling showing base region and its neighbors; (b) Schematic of base
region grown from (a) and its new neighbors.

To adapt and select region sizes based on SR. we first perform GCT analysis across the
spectrogram of the signal analyzed using a fixed region size with a modified 2-D Hamming

159



window that satisfies the constant overlap-add property. We refer to this as the base tiling, and in
each region, we compute the SR metric. The result of this initial analysis is a 2-D grid of SR
values (Figure A-3a). Each base region is grown by examining its neighbors' SR values. Denote
SRbase as the SR value of a base region with neighboring SRo,, SRbottom, SRieft, SRright as shown in
Figure 4. Furthermore, denote SRmergedneighjor as the SR value computed using the combined
windows of the base and one if its neighboring regions. The base region is then recursively
merged with its neighbors using the following algorithm:

Al) Compute SRmerged,neighbor of the base region for all of its neighbors (top, bottom, left,
right)
A2) Determine the maximum of the four SR values computed in Al) (denoted as SRmerged,max)
with its corresponding neighbor maxneighbor.
A3) If SRmerged,max < max (SRbase, SRtop, SRbottom, SRiejt, SRright),
terminate the algorithm by creating a new region SRmerged equal to the base region. Otherwise,
merge base region with maxneighbor to form SRmerged with corresponding SR value SRmerged,max.
Determine the new neighbors of SRmerged by its four edges. Use SRmerge as the base region in Al)
to complete the recursion.

The algorithm iteratively grows each base region until the SR value of any resulting merged
region is less than that of the unmerged region. The order of the base regions merged is based
ordering the SR values of all base regions in descending order. In case the neighbor of a base
region has already been incorporated into a previously merged region, it is excluded from the SR
computations and comparison in the algorithm. Note that the neighbors of any region are strictly
those along its four vertical edges such that only rectangular regions are grown (Figure A-3b).

After all base regions have been processed by the algorithm, the resulting set of merged regions is
used in 2-D demodulation for analysis/synthesis. The 2-D Hamming windows in each merged
region are summed and used to extract the appropriate coordinates of the spectrogram and
demodulated individually as described in Section 2. The results are summed across all merged
regions to reconstruct the spectrogram; the constant-overlap-add property of the 2-D Hamming
windows guarantees a unity system if demodulation is not performed. The reconstructed
spectrogram is combined with the phase of the original spectrogram and inverted for waveform
reconstruction.

A.4 Evaluation and Results
A.4.1 Specific Methods
To assess the utility of the proposed methods, we performed analysis/synthesis using the GCT on
32 sentences of the TIMIT corpus sampled at 16 kHz. The data set consisted of 8 males and 8
females speaking 2 distinct sentences each. Short-time and GCT analyses were performed as in
Chapter 3 but using a base tiling (fixed region size) region size of 20 ms by 625 Hz. We use the
proposed series model with fixed and adaptive region sizes As quantitative metrics for
comparison, we computed 1) global and 2) normalized segmental (25-ms non-overlapping)
signal-to-noise ratios (SNR) and 3) PESQ scores of the synthesized waveforms in relation to the
original.

A.4.2 Results
Figure A-4 shows the original and reconstructed spectrograms of a TIMIT utterance using the
series-based reconstruction with fixed region size and that from the adaptive method. For
display/comparison purposes, we plot the log spectrograms in these figures. In addition, we show
the non-base tilings from region growing and a single base tiling (20 ms by 625 Hz) for
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comparison purposes. Table A-2 lists average metrics across all utterances. The enforcement of
harmonic structure in unvoiced regions presumably causes poorer performance relative to the
analysis/synthesis method presented in Chapter 3. We did not perceive a difference of the
waveforms from fixed and adaptive series methods in informal listening. Nonetheless, the ability
of the adaptive method in providing sdistinct tilings (Figure A-4) of the 2-D analysis space with a
modest SNR gain motivates future work in exploring optimal region-growing methods and/or
alternative salience metrics to further improve analysis/synthesis.
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Figure A-4. (a) Original spectrogram of utterance "You'll have to try it alone";
spectrogram plotted on log scale; (b) reconstruction of spectrogram of utterance in (a) using
series method (fixed-size) and (c) adaptive regions; black tilings denote non-base tilings
from region growing (base tilings, 20 ms by 625 Hz, are excluded), a single base tiling (red,
210 ms, 3000 Hz) is shown for comparison purposes. Spectrograms plotted on log scale.

Table A-2. Average global and segmental SNRs and PESQ values.

PESQ Global SNR (dB) Segmental SNR (dB)
Series (fixed) 3.69 9.67 10.14
Series (adaptive) 3.70 9.78 10.19

A.5 Conclusions
This section has developed an auditory-inspired method for adaptively selecting region sizes
using a region growing method and a local salience metric for GCT processing. Although we
obtained only minor gains in SNR for analysis/synthesis, we anticipate these tilings may provide
more benefit in applications such as speech enhancement, analogous to the one-dimensional
adaptive scheme presented in [50]. A limitation of the current method is that region growing is
done in a greedy fashion; specifically, the choice of region growth is based only on an increase in
the salience ratio for a local region and its neighbors without consideration of subsequent
iterations of the region growing method. Future work will explore approaches to optimally select
region sizes with the aim of further improving performance in analysis/synthesis.
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Appendix B

Sinusoidal-based Speaker Separation
System

In this thesis, we have used as a frame-based signal representation in contrast to a 2-D approach
the sinusoidal system (sinusoidal-based) in the co-channel speaker separation task. Herein we
briefly describe modifications to the original separation system proposed and described in [23] as
used in this work. We consider a mixture of two speakers resulting in three distinct voicing state
mixtures (as in Chapter 3): voiced-on-voiced, voiced-on-unvoiced, and unvoiced-on-unvoiced.
The three primary modifications are 1) removal of matched sinusoidal frequencies, 2) diagonal
matrix loading of the least-squares formulation, and 2) handling of voicing and unvoiced speech
regions. As all other steps are identical to the original method, we refer the reader to [23] for
further details and briefly summarize here the basic system and its extensions.

B.1 Basic System
The basic sinusoidal-based separation system is a frame-based/short-time technique in which
short-time segments of the mixture waveform are processed. Two voiced signals were assumed
to be present within each short-time segment such that sinusoidal parameters can be estimated for
resynthesis of individual speakers' waveforms; the system requires prior knowledge of the pitch
tracks of individual speakers for signal separation [23]. In particular, the Fourier transform of a
short-time segment of the mixture waveform is assumed to correspond to a sum of harmonic
components arising from two sets of sinusoids, where each set corresponds to an individual
speaker; the frequency positions of the sinusoids in the Fourier transform are based on a simple
mapping of pitch values to harmonic locations. In Figure B-1, we schematically illustrate the
spectrum of a mixture consisting of two speakers. For separation, prior pitch knowledge is used
to map the locations of these sinusoids in the mixture spectrum. Subsequently, a least-squared-
error (LSE) fit is performed to solve for the sinusoid amplitudes of individual speakers. This
formulation results in a matrix equation that we denote for conciseness as Hb = x, where H is a
symmetric matrix obtained in the LSE formulation, b is a vector of the sinusoidal amplitudes, and
x is a vector of the mixture amplitudes. Inverting H gives a solution to b, i.e., b = H-'x,
thereby resulting in two spectral estimates of the individual speakers. The inverse Fourier
transform is then applied to the individual spectra to result in waveform estimates of the
individual speakers.
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frequency positions of the sinusoids in the short-time spectrum. The resulting short-time
waveform estimate is used as the estimate of the voiced speaker and the difference (i.e., the
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residual) between the original mixture waveform and this estimate is used as that for the unvoiced
speaker. Figure B-2 shows a schematic of this procedure. Finally, in the unvoiced-on-unvoiced
case the mixture waveform is halved due to the ambiguity of assignment of sinusoids.

(a) (c)

b(e)

(d)

Figure B-2. (a) Mixture spectrum (maroon) consisting of a voiced (red) speaker with pitch
foi and unvoiced speaker (blue); (b) LSE fit to obtain estimate of (c) voiced speaker; (d)
subtraction of voiced estimate from original mixture spectrum to obtain (e) estimate of
unvoiced speaker.
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Appendix C

Two-dimensional Signal Processing
Properties

In this thesis, we have utilized extensively properties of two-dimensional (2-D) signal processing
to characterize speech in the time-frequency space and corresponding GCT domain. Herein we
briefly summarize several key properties as they relate to those referred to in our derivations and
development of the modulation model. We refer the reader to [29] for details of their derivation
and emphasize here the results pictorially.

C.1 Harmonic Lines
In our analysis of spectrograms, we have invoked use of a sinusoidal series to model harmonic
structure in voiced speech. For illustrative purposes, we consider a single sinusoid present in the
time-frequency space oriented as having oscillations across frequency as in the narrowband
spectrogram (Figure C-la). The periodicity to, of the sinusoid across frequency will be inversely
related to the spacing 11, (or "frequency") of the resulting impulses in the 2-D Fourier transform
(i.e., GCT domain). Extending the sinusoid now to a sinusoidal series in Figure C-lb, note that
the number of harmonics in the resulting GCT domain will decrease with increasing os. In
relation to pitch in the narrowband representation, the GCT therefore will have more harmonics
for higher pitch values. As the "dual" to the narrowband case, consider from Figure C-2 a
sinusoid oriented such that oscillations occur across time as in with the wideband spectrogram
computed for voiced speech. The inverse relation of the spacing between harmonic lines and the
"frequency" of harmonic components in the GCT domain still holds. Consequently, as argued in
the wideband representation, the GCT will exhibit more harmonics for lower pitch values.

C.2 Bandwidth of Envelope Content
In addition to harmonic content, our analysis of spectrograms also utilized generalized
"bandlimited" (in the GCT domain) functions to represent the envelope content i.e.,
corresponding to formant structure and onset/offsets. As a simple example, consider a 2-D
rectangle located in the time-frequency space. As an initial condition, we illustrate in Figure C-
3a a rectangle with time width An longer than frequency width denoted by Aw. The
corresponding GCT of this rectangle will have bandwidth along the v-axis (fl-axis) denoted by
Av (Afl) that is inversely related to An (Aw). Observe that increases in AW (An) result in
decreases in All (Av) (Figure C-3 and Figure C-4). These arguments can be used to characterize
the expansion/contraction of envelope content in the GCT space as was done in particular for
formant structure (see Chapter 3) and onset/offset content.

C.3 Rotations
Consider next rotating either the single sinusoid or rectangle by an angle 6 as was used to model
pitch dynamics in the narrowband spectrogram (Figure C-5a). For the sinusoid, the spacing
between harmonic lines to, is now along an axis coinciding with 6 while the vertical and
horizontal distances between the harmonic lines is escos (6) and to, sin(O), respectively. This
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rotation in the time-frequency space corresponds to a rotation of the impulses in the GCT domain
such that they are 0 away from the fl-axis. For the rectangle (Figure C-5b), this corresponds to a
similar rotation such that the "widths" of the function in time-frequency space as well as the
bandwidths in the GCT space become functions of 8. Similarly, the rotation of the sinusoidal
content was used to argue for its relation to pitch dynamics in the narrowband representation.
Furthermore, in both the narrow and wideband representations, rotation of a rectangle
representing formant structure was used to incorporate formant dynamics into the model.

C.4 Modulation
Finally, we illustrate in Figure C-6 the concept of modulation in two dimensions. Specifically, a
grating pattern-like carrier component (e.g., a sinusoid resting on a DC pedestal) is modulated
(i.e., multiplied) by a slowly varying envelope component resulting in the modulation model. In
the corresponding 2-D Fourier transform space (e.g., the GCT), the carrier component exhibits an
impulse at the origin reflecting the DC value and two impulses reflecting the spatial frequency
and orientation of the 2-D sinusoid. The slowly varying envelope component is mapped to a
component near the origin in the 2-D Fourier space. The 2-D Fourier transform of the
modulation product exhibits replicas of the Fourier transform of the envelope at the positions of
the carrier.

(a) a (b)

__ _ 1 1

n n-
U WS~

1 1

n nI

Q(d) Wc

na

Figure C-1. A single sinusoid schematized in blue oriented across (, with (relatively) (a)
small and (b) large w, values and their corresponding GCT representation; observe the
inverse relation between w, and D,; (c - d) illustrate a sinusoidal series schematized in red
with the corresponding GCT representation showing fewer harmonic components for small
w, versus large os.
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( (b) 1
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ns 0 I fs 0C-s
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Figure C-2. A sinusoid schematized in blue oriented across n with (relatively) (a) small and
(b) large &s values and their corresponding GCT representation; note the inverse relation
between ), and 1,; (c - d) illustrate a sinusoidal series schematized in red with the
corresponding GCT representation showing fewer harmonic components for small 0)s,
versus large ),.

An

(c)

A lf oc -

U

1
Av ocA

(d) f 1

Aco

U

-1-1
Av oc-

Figure C-3. (a) Schematic illustrating rectangle with longer time duration than frequency
duration; (b) GCT of (a) with corresponding inverse relation in bandwidth along v and 11.
axes with respect to An and Ao, respectively; (c) expansion of (a) along W and (d)
corresponding reduction in Afl.
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Figure C-4. (a) Relative to Figure C-3a, an expansion along n and (b) corresponding
reduction in Av; (b) expansion relative to Figure C-3a along both n and o resulting in
reduction of bandwidth in (d) for both Av and A.
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\ :Y(O)

Figure C-5. (a) Rotation of single sinusoidal by angle 0 such that W, is oriented along 6 and
vertical and horizontal distances between sinusoid peaks are also functions of 0; (b) GCT of
(a) illustrating corresponding rotation of impulses away from the fl-axis; (c) rotation of a
rectangle by 0 and corresponding GCT with rotation; "bandwidths" of the function are no
rotated by 0 in the GCT as well.

170



Modulation Model = Envelope X Carrier
Carrier = DC + Sinusoid

EnveloDe Modulation Model

2-D Fourier Transform

Modulation Model

+U
Figure C-6. Simulations illustrating concept of modulation in two dimensions; the
modulation model is the product of a grating pattern e.g., a sinusoid resting on a DC
pedestal multiplied or modulated by a slowly varying envelope structure (here, a slowly-
varying sinusoid with no DC component). In the 2-D Fourier space, the carrier consists of
an impulse at the origin reflecting the DC pedestal and two peaks reflecting the spatial
frequency and orientation of the sinusoid; the 2-D Fourier transform of the envelope is
replicated at the locations of the peaks corresponding to the carrier due to modulation.
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Appendix D

Computational Complexity

In this thesis, we have developed algorithms using two-dimensional (2-D) processing of speech in
local time-frequency regions of the narrowband and wideband spectrograms. Due to the 2-D
nature of our framework, the computational complexity of our algorithms will be greater than
traditional short-time/frame-based processing of speech. In this section, we describe and assess
analytically the complexity of a typical Grating Compression Transform-based (GCT) processing
algorithm.

D.1 Complexity as a Function of Number of Discrete-Fourier
Transforms
In delineating the 2-D versus short-time/frame-based methods, we view the primary
computational cost as arising from computing 2-D discrete-Fourier transforms (DFT) across
multiple localized regions of the short-time Fourier transform (STFT) magnitude; therefore, we
focus on this component in our calculations. Additional steps such as matrix inversions used in
least-squared-error (LSE) fitting and search methods (e.g., in peak-picking) are excluded, since
such steps may also be used in traditional frame-based processing techniques. For instance, in the
sinusoidal-based separation system, matrix inversion is similarly required to perform LSE fits to
the short-time spectrum (see Appendix B).

D.2 Analysis Parameters
For completeness, Table D-1 lists all of the parameters used in short-time and GCT-based
analysis along with their corresponding abbreviations; as will be subsequently discussed, only a
subset of these parameters will be relevant for analysis of complexity. In Table D-1, NGCT refers
to the length of the DFT applied along a single dimension such that corresponding 2-D DFT is of
size NGCT. Table D-2 and Table D-3 list the specific parameter values used in processing the
waveform for narrowband- and wideband-based GCT analysis. As a reference for measurement,
we consider processing a waveform sampled at 16 kHz with duration of 1 second such that
L = 16000.

Table D-1. Listing of parameters and their abbreviations in GCT analysis of spectrograms.

Parameter Abbreviation
Time length of signal L
Time length of short-time analysis window (STFT) Lw
Frame size (STFT) dtSTFT

DFT length for STFT NSTT
Frequency width of local time-frequency region faCr
Time width of local time-frequency region tGCT
Step size along frequency in GCT analysis dfac7
Step size along time in GCT analysis dtGcT

DFT length of 2-D GCT computation NGCT
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Table D-2. Table of parameters for narrowband-based GCT analysis.

L Lw dtSTFT NSTFT fGCT tGcT dfGcT dtGcT NGcT
Time/Frequency (ms/Hz) 1000 32 1 875 20 -218 5
Samples 16000 512 16 512 28 20 7 5 512

Table D-3. Table of parameters for wideband-based GCT analysis.

L Lw dtsTFT NsTFT fGcT tGcT dfGcT dtGcT NGcT

Time/Frequency (ms/Hz) 1000 2.5 0.625 500 37.5 125 9.375
Samples 16000 40 10 512 16 60 4 15 512

D.3 Complexity Analysis
To analyze the complexity of GCT analysis, we begin by first noting that the complexity of a 1 -D
discrete-Fourier transform (DFT) used to compute the STFT (i.e., the spectrogram) using the
standard fast Fourier transform (FFT) algorithms has complexity of NSTFT log 2 (NSTFT) [2].
Furthermore, the 2-D DFT (computed via the FF1') used in computing the GCT has complexity of
NGCT 109 2 (NGCT) [29.

To compute the STFT for a waveform of length L samples using a short-time analysis window of
length L, < NSTFT and frame rate dtSTFT, we must compute Nsices 1-D DFTs, where Nsices is
the number spectral slices and approximately given by

Nsices L dtSTFT-

The complexity of the STFT computation is therefore

ComplexitySTFT = O(Nsuces(NST FT 10 2 (NSTFT))) (D.2)

where 0() denotes big-O notation. Rewriting this in terms of the underlying parameters of
analysis, we obtain

ComplexitySTFT = 0( L (NSTFT 1092(NSTFT)))- (D.3)

Building on this result, the number of 2-D FFT computations required is denoted as Npatches
corresponding to the total number of local time-frequency regions to be analyzed by the GCT:

Npatcnes A: Npatches(time) Npatches(frequency) (D.4)

Npatches(time) dstuces (D.5)

NSTFT

patches(frequency) 2 (D.6)
N dfGCT

The complexity of GCT analysis of a spectrogram is

ComplexityGCT = O(ComplexityTFT + Npatches(NG2CT log 2(NGCT ))) (D.7)
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i.e, the complexity of computing the STFT added to that of GCT analysis across all local time-
frequency regions. Rewriting this in terms of the parameters used in analysis, we have

L
ComplexityGCT = 0 

L (NSTFT 10 2 (NSTFT))

+ ( dtSTF T (D .8)

2(dfGC2)) dtGCT tSTFT) (NGCT log2 (NGCT)).

Simplifying this, we have that

ComplexityGCT - 0 (LNSTFT) (1o92(NST FT + I NGCT log 2 (NGCT)\ (.
dt SF TFT 2(dfGCT)(dtGCT) (D.9)

Substituting the numerical values of the analysis parameters into (D.3) and (D.9) for the
narrowband representation, we have that GCT processing of a 1-second waveform sampled at 16
kHz requires 1.73 x 1010 operations relative to 4.61 x 106 operations in computing the STFT

1.73x10'
0

alone; this corresponds to a 1 ~ 3750-fold increase in complexity. Similarly in the
wideband case, GCT processing requires 1.61 x 1010 operations while the STFT computation

requires 7.37 x 106 operations resulting in a ~ 61X10 -t 2200-fold increase in complexity.
7.37X10

6

D.4 Empirical Measurements
To estimate the computation time required in STF17 and GCT-based processing, we simulated 1-
D and 2-D DFT computations on test signals consisting of Gaussian white noise. Simulations
were performed on an Intel 2.93 Gigahertz processor using the MATLAB software package [51].
Computation time was recorded using the 'tic' and 'toc' operations available in MATLAB.

1000 1-D DFT computations of length NSTFT = 512 are computed on a white noise sequence of
512 samples. Next, we simulated 1000 2-D 512 by 512-point DFT computation of a 2-D white
noise sequence of size 512 by 512. We compute the average of the simulations to obtain
representative computation times of individual 1-D and 2-D FFT computations. We denote these
values as USTFT and UGCT, respectively. Finally, using these values, we estimate the total
computation times ctotal (STFT) and ctotai (GCT) as

Ctotai(STFT) = NslicesiSTFT (D.10)

Ctotai (GCT) = Ctotal (STFT) + Npatenes GCT . (D.11)

In our simulations, we obtained values of USTFT = 1.313 X 10- seconds and UGCT = 9.7 X
10-3, respectively. The resulting estimated computation times are shown in Table D-4 based on
substituting the parameter values for the narrowband and wideband cases in solving for Nsices
and Npatches. Both short-time analysis methods have a total computation time -100 times less
than the 1 second duration of the signal. In contrast, GCT analysis is -66 to 70 times greater than
the duration of the signal. While short-time analysis can be performed in real time, substantially
greater reductions in computational complexity are required for GCT processing to be applicable
to real-time applications.

One future direction for complexity reduction may be explored in relation to the substantial
overlap of the local time-frequency regions in GCT analysis. In both the narrowband and
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wideband parameters used in this thesis, dtGCT and dfGCT are the size of the entire region.
4

Consequently, in computing the 2-D DFT, samples are repeated along both the time and
frequency directions. Recursive FFT algorithms may be incorporated to exploit this redundancy
in data to reduce the complexity of the 2-D DFT computations [2]. In addition to complexity
reduction, parallel processing techniques may also be used to reduce the run time of GCT-based
algorithms.

Table D-4. Estimated computational time of processing a 1-second waveform with STFT
and GCT-based processing for wideband and narrowband representation. Units of time
are measured in seconds.

Narrowband Wideband
Ctotal(STFT) 1.31 X 10-2 2.10 X 10-2
cota I (GCT) 70.92 66.24
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