2,543,844 research outputs found
Dynamic transition in vortex flow in strongly disordered Josephson junction arrays and superconducting thin films
We study the dynamics of vortices in strongly disordered Josephson
junction arrays and superconducting films driven by a current. We find a
dynamic phase transition in vortex flow at a current . Below
there is plastic flow characterized by an average-velocity correlation length
scale in the direction of motion, which diverges when approaching
. Above we find a moving vortex phase with homogeneous flow and
short range smectic order. A finite size analysis shows that this phase becomes
asymptotically a liquid for large length scales.Comment: 4 pages, 4 figure
Effect of Cluster Formation on Isospin Asymmetry in the Liquid-Gas Phase Transition Region
Nuclear matter within the liquid-gas phase transition region is investigated
in a mean-field two-component Fermi-gas model. Following largely analytic
considerations, it is shown that: (1) Due to density dependence of asymmetry
energy, some of the neutron excess from the high-density phase could be
expelled into the low-density region. (2) Formation of clusters in the gas
phase tends to counteract this trend, making the gas phase more liquid-like and
reducing the asymmetry in the gas phase. Flow of asymmetry between the
spectator and midrapidity region in reactions is discussed and a possible
inversion of the flow direction is indicated.Comment: 9 pages,3 figures, RevTe
An ultrasonic system for profiling bubblers in water
Multi-phase flow occurs as two or more discrete phases flow in a closed pipe or a vessel. Examples of phases include gas, liquid or solid and also different immiscible liquids or solids[1]. Two phase flow of fluids (e.g. gas/liquid, liquid/liquid, etc.) is an important phenomenon in which two immiscible phases coexist in a thermodynamic equilibrium. As a two phase flow regime, bubbly flow column are intensively used as multiphase contactors and reactors in chemical, biochemical and petrochemical industries. Investigation of design parameters characterizing the operation and transport phenomena of bubble columns have led to better understanding of the hydrodynamic properties, heat and mass transfer mechanisms and flow regime characteristics ongoing during the operation[2, 3]. Due to the stringent regulations on precise flow control especially in the case of two phase fluid flow,, there has always been a necessity for developing an easier to use, yet more precise approaches or instrumentation. Accordingly, tomographic measurement is more significant and attractable especially in today's industrial process .
Quantum phase transition of Ising-coupled Kondo impurities
We investigate a model of two Kondo impurities coupled via an Ising
interaction. Exploiting the mapping to a generalized single-impurity Anderson
model, we establish that the model has a singlet and a (pseudospin) doublet
phase separated by a Kosterlitz-Thouless quantum phase transition. Based on a
strong-coupling analysis and renormalization group arguments, we show that at
this transition the conductance G through the system either displays a
zero-bias anomaly, G ~ |V|^{-2(\sqrt{2}-1)}, or takes a universal value, G =
e^2/(\pi\hbar) cos^2[\pi/(2\sqrt{2})], depending on the experimental setup.
Close to the Toulouse point of the individual Kondo impurities, the
strong-coupling analysis allows to obtain the location of the phase boundary
analytically. For general model parameters, we determine the phase diagram and
investigate the thermodynamics using numerical renormalization group
calculations. In the singlet phase close to the quantum phase transtion, the
entropy is quenched in two steps: first the two Ising-coupled spins form a
magnetic mini-domain which is, in a second step, screened by a Kondoesque
collective resonance in an effective solitonic Fermi sea. In addition, we
present a flow equation analysis which provides a different mapping of the
two-impurity model to a generalized single-impurity Anderson model in terms of
fully renormalized couplings, which is applicable for the whole range of model
parameters.Comment: 24 pages, 12 figs; (v2) minor changes, flow equation section extende
Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept
A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also shown
Airflow Model Testing to Determine the Distribution of Hot Gas Flow and O/F Ratio Across the Space Shuttle Main Engine Main Injector Assembly
Engine 0209, the certification engine for the new Phase 2+ Hot Gas Manifold (HGM), showed severe deterioration of the Main Combustion Chamber (MCC) liner during hot fire tests. One theory on the cause of the damage held that uneven local distribution of the fuel rich hot gas flow through the main injector assembly was producing regions of high oxidizer/fuel (O/F) ratio near the wall of the MCC liner. Airflow testing was proposed to measure the local hot gas flow rates through individual injector elements. The airflow tests were conducted using full scale, geometrically correct models of both the current Phase 2 and the new Phase 2+ HGMs. Different main injector flow shield configurations were tested for each HGM to ascertain their effect on the pressure levels and distribution of hot gas flow. Instrumentation located on the primary faceplate of the main injector measured hot gas flow through selected injector elements. These data were combined with information from the current space shuttle main engine (SSME) power balances to produce maps of pressure, hot gas flow rate, and O/F ratio near the main injector primary plate. The O/F distributions were compared for the different injector and HGM configurations
Flavor ordering of elliptic flows at high transverse momentum
Based on the quark coalescence model for the parton-to-hadron phase
transition in ultra-relativistic heavy ion collisions, we relate the elliptic
flow () of high \pt hadrons to that of high \pt quarks. For high \pt
hadrons produced from an isospin symmetric and quark-antiquark symmetric
partonic matter, magnitudes of their elliptic flows follow a flavor ordering as
if strange quarks have a
smaller elliptic flow than light quarks. The elliptic flows of high \pt
hadrons further follow a simple quark counting rule if strange quarks and light
quarks have same high \pt spectrum and coalescence probability.Comment: 4 pages, 1 figure, revte
Aerothermal modeling program. Phase 2, element B: Flow interaction experiment
NASA has instituted an extensive effort to improve the design process and data base for the hot section components of gas turbine engines. The purpose of element B is to establish a benchmark quality data set that consists of measurements of the interaction of circular jets with swirling flow. Such flows are typical of those that occur in the primary zone of modern annular combustion liners. Extensive computations of the swirling flows are to be compared with the measurements for the purpose of assessing the accuracy of current physical models used to predict such flows
- …
