42,577 research outputs found

    Adaptive Smoothing in fMRI Data Processing Neural Networks

    Full text link
    Functional Magnetic Resonance Imaging (fMRI) relies on multi-step data processing pipelines to accurately determine brain activity; among them, the crucial step of spatial smoothing. These pipelines are commonly suboptimal, given the local optimisation strategy they use, treating each step in isolation. With the advent of new tools for deep learning, recent work has proposed to turn these pipelines into end-to-end learning networks. This change of paradigm offers new avenues to improvement as it allows for a global optimisation. The current work aims at benefitting from this paradigm shift by defining a smoothing step as a layer in these networks able to adaptively modulate the degree of smoothing required by each brain volume to better accomplish a given data analysis task. The viability is evaluated on real fMRI data where subjects did alternate between left and right finger tapping tasks.Comment: 4 pages, 3 figures, 1 table, IEEE 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI

    Reconstruction of cosmological initial conditions from galaxy redshift catalogues

    Full text link
    We present and test a new method for the reconstruction of cosmological initial conditions from a full-sky galaxy catalogue. This method, called ZTRACE, is based on a self-consistent solution of the growing mode of gravitational instabilities according to the Zel'dovich approximation and higher order in Lagrangian perturbation theory. Given the evolved redshift-space density field, smoothed on some scale, ZTRACE finds via an iterative procedure, an approximation to the initial density field for any given set of cosmological parameters; real-space densities and peculiar velocities are also reconstructed. The method is tested by applying it to N-body simulations of an Einstein-de Sitter and an open cold dark matter universe. It is shown that errors in the estimate of the density contrast dominate the noise of the reconstruction. As a consequence, the reconstruction of real space density and peculiar velocity fields using non-linear algorithms is little improved over those based on linear theory. The use of a mass-preserving adaptive smoothing, equivalent to a smoothing in Lagrangian space, allows an unbiased (although noisy) reconstruction of initial conditions, as long as the (linearly extrapolated) density contrast does not exceed unity. The probability distribution function of the initial conditions is recovered to high precision, even for Gaussian smoothing scales of ~ 5 Mpc/h, except for the tail at delta >~ 1. This result is insensitive to the assumptions of the background cosmology.Comment: 19 pages, MN style, 12 figures included, revised version. MNRAS, in pres

    Multiscale adaptive smoothing models for the hemodynamic response function in fMRI

    Get PDF
    In the event-related functional magnetic resonance imaging (fMRI) data analysis, there is an extensive interest in accurately and robustly estimating the hemodynamic response function (HRF) and its associated statistics (e.g., the magnitude and duration of the activation). Most methods to date are developed in the time domain and they have utilized almost exclusively the temporal information of fMRI data without accounting for the spatial information. The aim of this paper is to develop a multiscale adaptive smoothing model (MASM) in the frequency domain by integrating the spatial and frequency information to adaptively and accurately estimate HRFs pertaining to each stimulus sequence across all voxels in a three-dimensional (3D) volume. We use two sets of simulation studies and a real data set to examine the finite sample performance of MASM in estimating HRFs. Our real and simulated data analyses confirm that MASM outperforms several other state-of-the-art methods, such as the smooth finite impulse response (sFIR) model.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS609 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore