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Abstract
In the event-related functional magnetic resonance imaging (fMRI) data analysis, there is an
extensive interest in accurately and robustly estimating the hemodynamic response function (HRF)
and its associated statistics (e.g., the magnitude and duration of the activation). Most methods to
date are developed in the time domain and they have utilized almost exclusively the temporal
information of fMRI data without accounting for the spatial information. The aim of this paper is
to develop a multiscale adaptive smoothing model (MASM) in the frequency domain by
integrating the spatial and temporal information to adaptively and accurately estimate HRFs
pertaining to each stimulus sequence across all voxels in a three-dimensional (3D) volume. We
use two sets of simulation studies and a real data set to examine the finite sample performance of
MASM in estimating HRFs. Our real and simulated data analyses confirm that MASM
outperforms several other state-of-art methods, such as the smooth finite impulse response (sFIR)
model.
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1. Introduction
Since the early 1990’s, functional magnetic resonance imaging (fMRI) has been extensively
used in the brain mapping field because of its relatively low invasiveness, absence of
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radiation exposure, relatively wide availability, relatively high spatial and temporal
resolution, and importantly, signal fidelity. It has become the tool of choice in behavioral
and cognitive neuroscience for understanding functional segregation and integration of
different brain regions in a single subject and across different populations (Friston et al.
(2009), Friston (2007), Huettel et al. (2004)). It commonly uses blood oxygenation level-
dependent (BOLD) contrast (Ogawa et al. (1992)) to measure the hemodynamic response
(eg., change in blood oxygenation level) related to neural activity in the brain or spinal cord
of humans or animals. Thus most fMRI researches correlate the BOLD signal elicited by
some specific cognitive process with the underlying unobserved neuronal activation.

In the modeling literature of fMRI data, a linear time invariant (LTI) system is commonly
implemented to model the linear relationship between a stimulus sequence and the BOLD
signal (Boynton et al. (1996), Friston et al. (1994)). Specifically, the BOLD signal at time t
and voxel d, denoted as Y (t, d), is the convolution of a stimulus function, denoted as X(t),
and a hemodynamic response function (HRF), denoted as H(t, d), plus an error process,
denoted as ε(t, d). See Fig. 1 for an illustration of LTI. While nonlinearities in the BOLD
signal are predominant for stimuli with short separations (Boynton et al. (1996), Buxton et
al. (1998)), it has been shown that LTI is a reasonable assumption in a wide range of
situations (Glover (1999), Friston et al. (1994)). Furthermore, with the advent of event-
related fMRI, it is possible to estimate the shape of HRF elicited by cognitive events. Given
the shape of the estimated HRF, it is also important to extract several HRF measures of
psychological interest including the response amplitude/height (Ha), time-to-peak (Tp) and
full-width at half-max (W) in HRF (see the definitions of Ha, Tp, and W in Fig. 1), which
may be correlated with the intensity, onset latency, and duration of the underlying brain
metabolic activity under various experimental manipulations (Bellgowan et al. (2003),
Formisano and Goebel (2003), Richter et al. (2000), Lindquist and Wager (2007)). It has
been shown that minor amounts of mis-modeled HRFs or BOLD signals can lead to severe
loss in power and validity (Lindquist and Wager (2007), Loh et al. (2008), Casanova et al.
(2008), Lindquist et al. (2009)). Thus, it is important to obtain an accurate estimate of the
HRF shape, which is the focus of this paper.

In the last decade, dozens of time domain HRF models have been proposed and
implemented in the existing neuroimaging software platforms, including statistical
parametric mapping (SPM) (www.fil.ion.ucl.ac.uk/spm/) and FMRIB Software Library
(FSL) (www.fmrib.ox.ac.uk/fsl/) among many others. For instance, SPM uses a combination
of the canonical HRF and its derivatives with respect to time and dispersion (Friston et al.
(1994), Henson et al. (2002)). Other approaches include a finite impulse response (FIR)
basis set (Glover (1999), Ollinger et al. (2001)), the use of basis sets composed of principal
components (Aguirre et al. (1998), Woolrich et al. (2004)), spline basis sets (Zhang et al.
(2007)), a canonical function with free parameters for magnitude and onset/peak delay
(Lindquist and Wager (2007), Miezin et al. (2000)), Bayesian method (Genovese (2000),
Gössl (2001), Kim et al. (2010)), and several regularization-based techniques (Vakarin et al.
(2007), Casanova et al. (2008)). Particularly, Casanova et al. (2008) have shown that the
estimates of HRF can be sensitive to the temporal correlation assumption of the error
process.

Only few HRF models are studied in the frequency domain. The basic idea of these
frequency domain models is to transform the original fMRI signal into the frequency
coefficients and then develop a statistical model based on these coefficients. For instance,
Lange and Zeger (1997) developed a model in the frequency domain along with a two-
parameter gamma function as the HRF model. For experimental designs with periodic
stimuli, Marchini and Ripley (2000) proposed a model in the frequency domain with a fixed
HRF. Recently, Bai et al. (2009) used a nonparametric method to estimate HRF based on
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point processes (Brillinger (1974)). In comparison to the time domain approaches, these
frequency domain models are less sensitive to the temporal correlation assumption of the
error process (Marchini and Ripley (2000)), since these Fourier coefficients are
approximately uncorrelated across frequencies.

Almost all of the HRF models discussed above have exclusively estimated HRF on a voxel-
wise basis and ignored the fact that fMRI data are spatially dependent in nature.
Specifically, as is often the case in many fMRI studies, we observe spatially contiguous
effect regions with rather sharp edges. There have been several attempts to address the issue
of spatial dependence in fMRI. One approach is to apply a smoothing step before
individually estimating HRF in each voxel of the 3D volume. As pointed out by Yue et al.
(2010) and Li et al. (2011), most smoothing methods, however, are independent of the
imaging data and apply the same amount of smoothness throughout the whole image. These
smoothing methods can blur the information near the edges of the effect regions and thus
dramatically increase the number of false positives and false negatives. An alternative
approach is to explicitly model spatial dependence among spatially connected voxels by
using conditional autoregressive (CAR) and Markov random field (MRF) among others
(Besag (1986), Bowman (2007)). However, besides a specific type of correlation structure,
such as MRF, calculating the normalizing factor of MRF and estimating spatial correlation
for a large number of voxels in the 3D volume are computationally intensive.

The goal of this paper is to develop a multiscale adaptive smoothing model (MASM) in the
frequency domain to adaptively construct an accurate nonparametric estimate of the HRF
across all voxels pertaining to a specific cognitive process. This paper makes several major
contributions with each stated below.

• MASM constructs a weighted likelihood function by utilizing both the spatial and
frequency information of fMRI data.

• The proposed method carries out a locally adaptive bandwidth selection across
different frequencies and a sequence of nested spheres with increasing radii at each
voxel to adaptively and spatially estimate HRFs.

• The estimation procedure uses a back-fitting method to adaptively estimate HRFs
for multiple stimulus sequences and across all voxels.

The rest of the paper is organized as follows. Section 2 presents the key steps of MASM.
Section 3 reports simulation studies to examine the finite sample performance of MASM.
Section 4 illustrates an application of MASM in a real fMRI data set. Section 5 concludes
with some discussions.

2. Model Formulation
2.1. Multiscale Adaptive Smoothing Model

Here we introduce a multi-scale adaptive smoothing model for a single stimulus function.
Suppose that we acquire a fMRI data set in a 3D volume, denoted by  ⊂ R3, from a single
subject. In the time domain, LTI assumes that for d ∈ 

(2.1)

where ⊗ denotes the circular convolution between two aperiodic functions and ε(t, d) is a
measurement error. We observe Y (t, d) at T acquisition times t0, …, tT−1, where tk = ktTR
and tTR denotes the repetition time, which is the time between two consecutive scans.
Moreover, T0 = TtTR,  = {X(t): t ∈ [0, T0]} and  = {ε(t, d): t ∈ [0, T0], d ∈ } are
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assumed to be independent. The error process  is assumed to be a stochastic process
indexed by t ∈ [0, T0] and d ∈  with με(t, d) = E[ε(t, d)] = 0 and Cov(ε(t, d), ε(t′, d′)) = ΣT
(t, t′; d, d′) for all t, t′ ∈ [0, T0] and d, d′ ∈ . Therefore, the mean function and the
covariance function of Y (t, d) are, respectively, given by

(2.2)

(2.3)

In (2.3), ΣT (t, t′; d, d′) can characterize both temporal and spatial dependence structures in
the fMRI data.

The equivalent model with respect to (2.1) in the frequency domain is obtained by using the
Fourier transformation (Brillinger (1981), Brockwell and Davis (1991), Fan and Yao
(2003)). Let (f, d) be the Fourier transformation of Y (t, d) defined by

(2.4)

Similarly, let (f, d), (f), and (f, d) be the Fourier transformations of H(t, d), X(t), and
ε(t, d), respectively. In the frequency domain, model (2.1) can be rewritten as

(2.5)

Furthermore, we consider a discrete version of (2.5) and define the discrete Fourier
coefficients of Y (t, d), H(t, d), X(t), and ε(t, d) to be, respectively, φY (fk, d), φH(fk, d),
φX(fk), and φε(fk, d) at the fundamental frequencies fk = k/T for k = 0, …, T − 1. For instance,

at fk = k/T, let . Thus, the discrete version of (2.5) is
given by

(2.6)

for k = 0, 1, …, T − 1 and all d ∈ . Equation (2.6) is also a discrete circular convolution.

One advantage of model (2.6) in the frequency domain is that the temporal correlation
structure can be substantially simplified and thus the computation burden will be reduced.
First, under some regularity conditions (Shumway and Stoffer (2006)), the real and
imaginary parts of φY (fk, d) are approximately uncorrelated. Second, if ε(t, d) is a stationary
error process for each d ∈ , the Fourier coefficients are approximately uncorrelated across
a pre-specified set of Fourier frequencies under some regularity conditions (Brockwell and
Davis (1991)). Hence, it may be reasonable to assume ideally that φε(f, d) is a complex
process with the zero mean function and φε(f, d) and φε(f′, d′) are uncorrelated for f ≠ f′ in
the same voxel d = d′.

Besides the assumptions in (2.6), MASM also assumes two smoothness conditions. The first
one is a frequency smoothness condition. That is, for each (f, d) ∈ [0, 1] × , there is an
open neighborhood of f given the voxel d, denoted by NC(f, d), such that φH(f, d) is a
continuous function of f. The first condition allows us to consistently estimate φH(f, d) by
solely using the data in voxel d. The second one is a joint frequency and spatial smoothness
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condition. Specifically, there is a frequency-spatial neighborhood of (f, d), denoted by NJ (f,
d), such that there exists at least a sequence {(fn, dn)} in NJ (f, d) which satisfies

(2.7)

The set NJ (f, d) is alway nonempty, since it at least contains NC(f, d) given that (f, d) ∈
NC(f, d). The second condition allows us to incorporate fMRI data in a frequency-spatial
neighborhood of (f, d) to estimate φH(f, d). Assumption (2.7) may be reasonable for the real
fMRI data since the fMRI data often contain spatially contiguous homogenous regions with
rather sharp edges. When d varies in , assumption (2.7) allows for neighborhoods with
varying shapes across the 3D volume, and thus it can characterize varying degrees of spatial
smoothness. Moreover, under (2.7), MASM essentially treats {φY (f, d)} as a stochastic
process indexed by both frequency f and voxel d.

2.2. Weighted Least Square Estimate
Our goal is to estimate the unknown function {φH(f, d): f ∈ [0, 1], d ∈ } in MASM defined
in (2.6)–(2.7) based on the Fourier transformed fMRI data (Y) = {φY (fk, d): k = 0, …, T −
1, d ∈ }. To estimate φH(f, d), we combine the data at (fk = k/T, d′) near (f, d) to set up an
approximation equation as follows:

(2.8)

Based on model (2.8), we can construct a weighted function at (f, d). For simplicity, we
consider all fk ∈ I(f, r) = (f − r, f + r) and all d′ ∈ B(d, h), where r > 0 and B(d, h) is a
spherical neighborhood of voxel d with radius h ≥ 0. Then, to estimate φH(f, d), we
construct a locally weighted function, denoted as L(φH(f, d); r, h), which is given by

(2.9)

where |·| denotes the norm of a complex number. Moreover, ω̃(d, d′, f, fk; r, h) is a
nonnegative weight function such that

(2.10)

for all d ∈  and f ∈ [0, 1]. The right choice of ω̃(d, d′, f, fk; r, h) in (2.9) is the key to the
success of MASM. In Section 2.3, we explicitly define all weights ω̃(r, h) = {ω̃(d, d′, f, fk; r,
h): d, d′ ∈ , f, fk ∈ [0, 1]} for the fixed r and h.

Given ω̃(r, h), by differentiating L(φH(f, d); r, h) with respect to φH(f, d), we have

(2.11)
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where  is the conjugate of φX(fk). The variance of φ̂H(f, d) is approximated by

(2.12)

where φ̂ε(fk, d′) = φY (fk, d′) − φ̂H(fk, d′) φX(fk) and the last approximation is based on the
de-correlation between two different Fourier frequencies.

By taking the inverse Fourier transformation of φ̂H(f, d), we can derive

(2.13)

for any d ∈  and t. As discussed in Brillinger (1974) and Bohman (1960), since the whole
real domain in the Fourier transformation is truncated to the domain [0, T], the estimator of
H(t, d) by directly using the inverse Fourier transformation can be biased. Therefore, we use
a tapered estimator of H(t, d) as follows:

(2.14)

2.3. Multiscale Adaptive Estimation Procedure
We use a multiscale adaptive estimation (MAE) procedure to determine all weights ω̃(r, h)
and then estimate {φH(f, d): d ∈ , f ∈ [0, 1]}. MAE extends the multiscale adaptive
strategy from the propagation-separation (PS) approach (Polzehl and Spokoiny (2000,
2006)). MAE starts with building two sequences at each (f, d) ∈ [0, 1] × . The first is a
sequence of nested spheres denoted by

(2.15)

Increasing the spatial radius h, from the smallest scale h0 = 0 to the largest scale hS at each d
∈ , allows us to control the degree of smoothness in the spatial domain. The second one is
a sequence of nested intervals given by:

(2.16)

Increasing the frequency radius r from some smallest scale r0 > 0 to the largest scale rS at
each f ∈ [0, 1] allows us to control the degree of smoothness in the frequency domain. After
calculating ω̃(r0, h0), we can estimate φH(f, d) at the smallest scale (r0, h0), denoted by

. Then, based on the information contained in ,
we use the methods described below to calculate a set of weights ω̃(rl, hl) at radii hl and rl
for all (f, d) ∈ [0, 1] × . Sequentially, we update the estimates

 according to (2.11). At each iteration, we also calculate
a stopping test statistic at each d ∈ , denoted as W(d; hl, rl), to prevent over-smoothing
{φH(f, d): f ∈ [0, 1]}.
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The MAE procedure consists of four key steps: (i) initialization, (ii) weights adaptation, (iii)
estimation, and (iv) stop checking. These steps are presented as follows:

• Initialization. In this step, we set h0 = 0, r0 > 0, say r0 = 5/T, and the weighting
scheme ω̃(d, d, f, fk; r0, h0) = Kloc(|f − fk|/r0), where Kloc(x) is a kernel function with
compact support. Then we substitute ω̃(d, d, f, fk; r0, u0) into (2.11) and (2.12) to

calculate  and estimate . We also set up a geometric series

{ : l = 1, …, S} for the spatial radii, where ch ∈ (1, 2), say ch = 1.125, and
then we set up the second series {rl = rl−1 + br: l = 1, …, S} for the frequency radii,
where br is a constant value, say, br = 1/T. We set l = 1 and h1 = ch.

• Weight Adaptation. In this step, we compute the adaptive weight ω̃(d, d′, f, fk; rl,
hl), which is given by

(2.17)

where || · ||2 is the Euclidean norm. The functions Kloc(x) and Kst(x) are two kernel

functions within compact support. The  is the estimated variance

of  at the (l − 1)-th step. See (2.12) for details. The Kst(x) downweights the

information at (fk, d′) for large . The first two kernel
functions give less weight to (fk, d′), which is far from (f, d).

• Estimation. In this step, we substitute the weight ω̃(d, d′, f, fk; rl, hl) into (2.11)

and (2.12) in order to calculate  and  at the k-th
fundamental frequency fk and voxel d.

• Stop Checking. In this step, after the S0-th iteration for some S0 > 0 and S0 < S, we
calculate a stopping criterion based on a normalized distance between

 and

. Specifically, we calculate a test
statistic W(l)(d; hl, rl) to test the following hypotheses:

The W(l)(d; hl, rl) is an adaptive Neyman test statistic for testing the potential
difference between the two frequency series (Fan and Huang (2001)). See the
explicit form of W(l)(d; hl, rl) in Part A of Supplementary Document. If W(l)(d; hl,
rl) is significant at a given significance level α, say 0.05, then we set

 and l = S at voxel d. If l = S for all d ∈ , we stop the
MAE procedure. If l ≤ S or W(l)(d; hl, rl) is not significant, then we set hl+1 = chhl
and rl+1 = rl +br, increase l by 1, and continue with the weight adaptation step (ii).

Finally, we report the final  at all fundamental frequencies and substitute them into
(2.14) to calculate Ĥ(t, d) for all voxels d ∈ .

Remarks—The finite-sample performance of the MAE procedure depends on the
specification of some key parameters including S, ch, S0, b0, br and the kernel functions
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Kloc(·) and Kst(·). We have tested different combinations of key parameters in both simulated
and real data. The performance of MAE is quite robust to moderate changes in ch, S0, b0, br,
and S. See Part C of Supplementary Document for additional simulations.

For the kernel functions, we set

The latter one is the Parzen window (Fan and Yao (2003)). Other choices of the kernel
functions include the kernel functions in the original PS approach (Polzehl and Spokoiny
(2000, 2006), Tabelow et al. (2006, 2008)) or the Gaussian kernels. Since the initial
estimators of φH(f, d) are solely calculated in the frequency domain, they are pretty robust to
the choice of kernel function but sensitive to the bandwidth selection. So we select a small
bandwidth, say, 5/T, as the initial value, and then we use the adaptive procedure to
determine a better estimation by slowly increasing the bandwidths of (f, d).

The parameters hl and rl play the same role as the bandwidth of local kernel methods. The
small values of hl and rl only incorporate the closest neighboring voxels and the closest
frequencies of (f, d). Thus, small values of ch and br can prevent over-smoothing φ̂H(f, d) at
the beginning of MAE and improve the robustness of MAE, whereas small values of ch and
br lead to increased computational effort. We have found that ch = 1.125 and br = 1/T
perform well in numerous simulations.

We suggest to set S0 as a small integer, say 2 or 3. Large values of S0 lead to both heavy
computation and over-smoothing when a voxel d is either on the boundary of significant
regions or in some regions in which the HRFs change slowly with voxel location. After the
S0-th iteration, the stop checking step starts to compute the stopping criterion and check
whether further iteration is needed in this voxel. Moreover, the stop checking step is
essentially a bandwidth selection procedure. In the original PS approach (Polzehl and
Spokoiny (2000, 2006), Tabelow et al. (2006, 2008)), a Wald-type statistic was used to
compare consecutive estimates in order to prevent over-smoothing the parameters in the
estimated images. Since HRF is an infinite-dimensional function, we employ the adaptive
Neyman test statistic (Fan and Huang (2001)). Actually, our stop checking step is to set
some tolerance (e.g., significance level) and iterate until the difference is less than that
threshold, and thus it is the same as that used in original PS approach (Polzehl and Spokoiny
(2000, 2006), Tabelow et al. (2006, 2008)).

As the maximal iteration S increases, the number of neighboring voxels in 
increases exponentially and the number of time points in I(f, rl) increases linearly.
Moreover, a large S also increases the probability of over-smoothing φH(d) when the current
voxel d is near the edge of distinct regions and the HRFs change slowly with other locations.
In practice, we suggest the maximal step S up to be 15 but larger than 10.

Although spherical neighborhoods lead to a computationally simple procedure, the use of
these spherical neighborhoods is not an optimal way of incorporating imaging data in
“good” voxels, which are close to the imaging data in the current voxel. Particularly, for
those voxels near the boundary of activated regions, spherical neighborhoods may cover
many “bad” voxels. It is interesting to determine multiscale neighborhoods adaptive to the
pattern of imaging data at each voxel, which is our ongoing research.
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2.4. Multiple Stimuli
In the real fMRI studies, it is common that multiple stimuli are present. In this section, we
generalize MASM to the case of multiple stimuli. Under the assumption of the LTI system,
the BOLD signal is the sum of the individual responses to all stimuli convoluted with their
associated HRFs. See a sample path diagram in Fig. 2. Let X(t) = (X1(t), …, Xm(t))T be the
sequence vector of m different stimuli and its associated HRF vector H(t, d) = (H1(t, d), …,
Hm(t, d))T. Specifically, in the time domain, our MASM under the presence of m different
stimuli is given by

(2.18)

where <·, ·> is an inner product defined as <A, B> = ATB for two vectors A and B.
Subsequently in the frequency domain, the discrete version of MASM for multiple stimuli is
given by

(2.19)

where

(2.20)

(2.21)

Furthermore, the MASM for multiple stimuli assumes that for each j, φHj(f, d) satisfies both
the frequency smoothness condition in an open neighborhood of f, denoted as NCj(f, d), and
the joint frequency and spatial smoothness condition in NJj(f, d), a neighborhood of (f, d).
Note that NCj(f, d) and NJj(f, d) may vary across different j, since HRFs vary across different
j and cognitive processes. In this case, one cannot use the same weights ω̃(d, d′, f, fk; r, h)
for all stimuli since different stimuli may have different degrees of smoothness near each (d,
f). We present an alternative approach below.

We construct m locally weighted functions, denoted as Lj(φHj(f, d); r, h), given by

(2.22)

for j = 1, …, m, where φY [−j](fk, d′) = φY (fk, d′) − Σl≠j φHl (fk, d′)φXj(fk). Moreover, ω̃j(d, d′,
f, fk; r, h) characterizes the physical distance between (f, d) and (fk, d′) and the similarity
between φHj(f, d) and φHj(fk, d′). Similar to (2.11) and (2.12), we can derive recursive
formula to update φHj(f, d) and Var(φ̂Hj(f, d)) for j = 1, …, m based on any fixed weights
{ω̃j(d, d′, f, fk; r, h): d′ ∈ B(d, h), fk ∈ I(f, r)}. By differentiating Lj(φHj(f, d); r, h) with
respect to φHj(f, d), we can get

(2.23)
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Then, we approximate the variance of φ̂Hj(f, d), denoted as Var(φ̂Hj(f, d)), as follows:

(2.24)

where .

Based on the discussions above, we can develop an MAE procedure for multiple stimuli.
The key idea of MAE for multiple stimuli is to integrate MAE for the single stimulus
sequence and the backfitting method (Breiman and Friedman (1985)). Thus, it can
sequentially and recursively compute φ̂Hj(f, d) as j increases from 1 to m. For the sake of
space, we highlight several key differences between MAE for a single stimulus and MAE
for multiple stimuli. Generally, MAE consists of four key steps: (i) initialization, (ii) weight
adaption, (iii) recursive estimation, and (iv) stopping check.

• Initialization. We use the back-fitting method (Breiman and Friedman (1985)) to

iteratively compute  and estimate  based on φY [−j](f, d) ≈
φHj (f, d) φXj(f) + φε(f, d) for j = 1, …, m.

•
Weight Adaptation. We compute  as follows:

(2.25)

• Recursive Estimation. At the l–th iteration, we compute

. Then, based on weights

, we use the back-fitting method (Breiman and Friedman

(1985)) to iteratively calculate  and approximate 
according to (2.23) and (2.24).

• Stop Checking. After the S0-th iteration, we calculate the adaptive Neyman test

statistic, denoted by , to test difference between

 and

 for the j-th stimulus.

Finally, when l = S, we report the final  at all fundamental frequencies and
substitute them into (2.14) to calculate Ĥj(t, d) across voxels d ∈  for j = 1, …, m.

After obtaining HRFs for all stimuli, we may calculate their summary statistics, including
Ha, Tp, and W, and then carry out statistical inference based on the images of these estimated
summary statistics. For instance, most fMRI studies focus on comparing the Ha images
across diagnostic groups or across stimuli by using voxel-wise methods (Lindquist and
Wager (2007)). Specifically, the voxel-wise methods involve fitting a statistical model, such
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as linear model, to HRF summary data from all subjects at each voxel and generating a
statistical parametric map of test statistics and p-values (Nichols and Holmes (2002),
Worsley et al. (2004), Zhang et al. (2011)).

3. Simulation Studies
We conducted two sets of simulation studies to examine the finite sample performance of
MASM and MAE and compared them with several state-of-art models for estimating HRFs.
To present the results clearly, we also implemented an EM-based algorithm to cluster the
estimated HRFs, which is described in Part B of Supplementary Document, and will present
it in a companion paper.

3.1. Simulation I: One Stimulus Sequence
The first simulation compared MASM with the frequency method developed for a single
stimulus in (Bai et al. (2009)). This simulation is similar to the one given in Yue et al.
(2010). We simulated a time series with 200 observations according to model (2.1) at each
of all 1,600 pixels in a 40 × 40 phantom image, which contains 9 separated areas of
activation-circles with varying radii. These 9 areas were further grouped into three different
patterns with different shapes mixed together. See Fig. 3 (a.1), in which the dark blue, sky
blue and yellow colors represent the active Regions I, II and III, denoted as R1, R2 and R3,
respectively. The non-active region is denoted as R4. The stimulus function X(t) was
generated according to a boxcar paradigm consisting of either zero or one, which was
independently generated from a Bernoulli random variable with the success probability 0.15.
We set all HRFs to be zero outside all activation-circle regions, while within each circle we
convolved the boxcar paradigm X(t) with a standard HRF given by

with (A1, A2, A3) = (1, 5, 3), c = 0.35, (a11, a12) = (6, 12), (a21, a22) = (4, 8), (a31, a32) = (5,
10), (bj1, bj2) = (0.9, 0.9), and (dj1, dj2) = (aj1 * bj1, aj2 * bj2) for j = 1, 2, 3. The signals in
each active region were, respectively, scaled as

The error process ε(t, d) was generated from an AR(1) given as ε(t, d) = 0.3ε(t − 1, d)+ξ,
where ξ is a pure Gaussian noise N(0, σ2) with . The simulated BOLD signals
were given by Yj(t, d) + ε(t, d) for j = 1, 2, 3. In this simulation, the smallest signal-to-noise
ratio (SNR) was around 0.5 where SNR is defined as the mean of the absolute true signals
over σ. We repeated this simulation 500 times. Fig. 3 presents the phantom image and the
simulated image at a single time point with their related sample curves.

We applied MAE described above to simultaneously estimate HRFs across all voxels for
each simulated dataset and then used the EM-based clustering method to determine the
signal pattern and compute the average estimator of HRFs in each cluster. Fig. 4 presents the
clustering patterns with their mean HRFs. Inspecting Fig. 4 reveals several additional
clusters within the non-active region and their averaged curves are very close to the zero.
This indicates that even though the number of clusters may vary across simulations, the
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activation patterns can be correctly detected. The mean estimated HRFs are very close to the
ground truth especially for those activated regions (see Fig. 4).

We also applied the woxel-wise frequency domain method of Bai et al. (2009), called
FMHRF, to estimate HRFs across all voxels. To compare our method with FMHRF, we
calculated an accuracy measure (AM) at each of the first 11 time points since these time
points represent the neuronal change at voxel d. The AM is defined as

where xi(t, d) and yi(t, d) are, respectively, the estimated HRFs at time t by using our method
and by using FMHRF, Std(x(t, d)) is the standard deviation of {xi(t, d): i = 1, …, 500} at
time t, which is used to standardize the difference, and H(t, d) is the corresponding true
HRF. A negative value of AM(t, d) indicates that the estimated HRFs obtained from our
method have smaller bias compared to FMHRF. An inspection of Fig. 5 reveals that our
method outperforms FMHRF at almost all time points. In Fig. 5, we note an outlier in R4,
which may be caused by over-smoothing in some boundary voxels.

We used an isotropic Gaussian kernel with FWHM 5mm to smooth the simulated imaging
data and applied FMHRF to the Gaussian smoothed data. Then, we compared the obtained
results with those calculated from MASM based on the non-smoothed imaging data. We
compared MAE and FMHRF by calculating the differences between the estimated Ha, Tp
and W and their corresponding true values. Specifically, for Ha, Tp and W, a comparison
statistic in the d-th voxel is defined by

where x0,d represents the true value of Ha, Tp or W and x̂i,d and ŷi,d represent the estimated
Ha, Tp or W obtained from MASM and FMHRF, respectively, at voxel d. A negative value
of Dd indicates that the estimated HRFs obtained from MASM are closer to the true value
compared to FMHRF, since standard Gaussian smoothing can blur the BOLD signals in the
boundary voxels of active regions, especially those regions with small number of voxels. An
inspection of Fig. 6 reveals that MASM outperforms FMHRF in the smallest active regions
and the lowest SNR for all three parameters, especially Ha and W.

3.2. Simulation II: Multiple Stimuli
The second simulation compared MASM with several state-of-art methods discussed in
Lindquist et al. (2009). This fMRI simulation is similar to the first one except that we
consider three stimuli. We simulated the data with 200 time points (i.e., T = 200) in a 40 ×
40 phanton image containing 9 regions of activation-circles with varying radii and a
background region with zeros at each time point. These 9 active regions were also grouped
into three different BOLD patterns with each group consisting of three circles, which had the
same true signal series. The three true HRFs were defined as
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with (A1, A2, A3) = (1, 5, 3), c = 0.35, (a11, a12) = (6, 12), (a21, a22) = (4, 8), (a31, a32) = (5,
10), (bj1, bj2) = (0.9, 0.9), and (dj1, dj2) = (aj1 * bj1, aj2 * bj2) for j = 1, 2, 3. The boxcars
(e.g., the stimulus sequence) consisting of either zero or one were randomly generated by a
Bernoulli trials independently with the successful rate 0.15 for j = 1, 2, 3. The true BOLD

signals were calculated according to . The signals in the three
activation-circle groups were then scaled to be Y1(t) = Y (t)/6, Y2(t) = Y (t)/4 and Y3(t) = Y
(t)/2, respectively. The noise terms ε(t, d) were generated from a Gaussian distribution N(0,
σ2) with σ = 0.2. Finally, the simulated BOLD signals were set as Y (t, d) + ε(t, d) for j = 1,
2, 3. In this simulation, the smallest SNR was around 0.6. The background and the simulated
images with their related curves at some time points are given in Fig. 7.

We applied our MAE to simultaneously estimate all HRFs across all voxels in each of 500
simulated datasets. Then we clustered the estimated HRFs by using the EM algorithm and
calculated the mean curves of all patterns. See Fig. 8, in which the estimated HRFs
corresponding to the three stimulus sequences are presented.

We considered three state-of-art methods discussed in Lindquist et al. (2009) including: (i)
SPMs canonical HRF (denoted as GAM), which is a parametric approach by assuming the
HRF is a mixture of Gamma functions; (ii) the finite impulse response (FIR) basis set,
named as the semi-parametric smooth FIR model (sFIR), which assumes that HRF can be
estimated by a linear combination of some basis functions; and (iii) the inverse logit model
(IL), which considers the HRF as a linear combination of some inverse logit functions. As a
demonstration of the mean curves in each region estimated from these methods, we only
display the results from one stimulus in one sample in Fig. 9, from which we can find the
estimated HRFs from either smoothed or non-smoothed data are over-smoothed even though
they have the similar trending pattern as the true HRFs.

These over-smoothed results also can be reflected in the following statistics. Based on the
estimated HRF, we computed Ha, Tp, and W as the potential measure of response magnitude,
latency and duration of neuronal activity, respectively. We compared our method with sFIR,
IL and GAM based on the differences between the estimated statistics Ha, Tp, and W and the
true ones. We also calculated the evaluation statistics Dd for the d–th voxel. Fig. 10
indicates that our method can provide more accurate estimates of the HRF statistics,
compared with all others, especially GAM and IL. Moreover, most values of Dd are negative
and statistically significant at the 0.05 significance level. Also the average of the differences
between MASM and sFIR is small in the estimation of Ha, Tp, and W.

We also applied the Gaussian smoothing with FWHM equal 5mm to the simulated imaging
data before running sFIR, IL and GAM and then we compared them to MASM based on
unsmoothed data. An inspection of Fig. 11 reveals that MASM outperforms sFIR in the
estimation of Ha and W, but not Tp. This is consistent with the comparison in Fig. 10.
Inspecting Figs. 12 and 13 reveals that the differences Dd for all three parameters of interest
are negative in almost all voxels of the activation regions. This indicates that MASM
outperforms sFIR, IL, and GAM, even after applying the Gaussian smoothing.

Finally, we computed the computation times for sFIR, IL, GAM, and MASM, which are
shown in Table 1. Although MASM uses the information from neighboring voxels, its
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computation time slightly increases compared to GAM. As expected, the computation time
of MASM is longer than that of GAM and sFIR, but shorter than that of IL.

4. Data Analysis
To examine the finite sample performance of our MASM on real fMRI data, we used a
fMRI data set collected from a study designed to test the hypothesis that implicit retrieval of
conceptual and perceptual associations is differentially linked with medial temporal lobes
(MTL). In this study, 19 subjects completed an associative version of a speeded
classification task, in which they decided which of two objects was more likely to be found
inside a house. We first chose some regions of interest in the implicit test fMRI data from a
randomly selected subject to examine the estimation accuracy of MASM, and then we
computed the images of height, time-to-peak and width from all subjects to compare the
group-wise differences between MASM and three other competing methods.

The stimuli were 180 line drawings of familiar objects taken from the Microsoft online clip
art database at the website www.clipart.com. Each object was filled in with a single,
plausible color using Adobe Photoshop. Objects were pilot-tested for consistency in
response to the associative classification task (an inside/outside judgment). Critical trials
consisted of two objects presented side by side. The implicit test consisted of the 42 studied
trials, 14 of which were presented as intact pairs (objects studied together), 14 were
recombined (each object studied but not together) and 14 were re-colored versions of
otherwise intact pairs. Each new color was a plausible real-world color for any given object.
The implicit test also included 14 new, unstudied pairs as well as 26 null trials. So there are
in total 4 sequences of the stimuli. Finally, the null trials were used to assess baseline
activation levels.

4.1. Data Acquisition
Whole-brain gradient-echo, echo-planar images were collected (forty-six 3-mm slices, TR =
3 s, TE = 23 ms) using a 3T Siemens Allegra scanner while the participants performed the
cognitive task. Slices were oriented along the long axis of the hippocampus with a resolution
of 3.125mm × 3.125mm × 3mm. High resolution T1-weighted (MP-RAGE) structural
images were collected for anatomic visualization. Stimuli were back-projected onto a screen
and viewed in a mirror mounted above the participant’s head. Responses were recorded
using an MR-compatible response box. Head motion was restricted using a pillow and foam
inserts.

4.2. Analysis Results
We used SPM (see Friston et al. (2009)) to preprocess the fMRI data including the
realignment, timing slicing, segmentation, coregister, normalization, and spatial smoothing.
To de-trend the data, we implemented a global signal regression method which can enhance
the quality of the data and remove the spontaneous fluctuations common to the whole brain
(see Murphy et al. (2009)). Then in the first analysis, we used a canonical HRF model with
time and dispersion derivatives to estimate the HRFs corresponding with the four sequences
of the stimulus events. In the 2nd level estimation of SPM, F-statistic maps were computed
to detect the activation/deactivation regions triggered by the four stimuli and then we set a
threshold with the raw p value less than 0.01 and the extension K = 20 to find the significant
regions of interest (ROIs). To evaluate the performance of MASM, we randomly selected a
significant ROI detected by SPM for each stimulus type and calculated HRFs and their
associated statistics by using all four HRF estimation methods based on fMRI data in each
ROI.
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We presented the estimated HRFs from all four HRF estimation methods in Fig. 14 and
compared their shapes. Inspecting Fig. 14 reveals that the shape of estimated HRFs from
GAM, sFIR, and MASM is consistent with the pattern of the selected activation and
deactivation ROIs. However, as shown in Fig. 14 (b.2) and (d.2), it seems that IL does not
work well in the deactivation ROIs, since there is a large variation of the estimated HRFs
from IL. The HRF parameters including Ha, Tp, and W obtained from MASM and sFIR
differ significantly from those obtained from GAM, since GAM as a parametric model may
not be flexible enough to capture the shape of true HRFs. This result is also consistent with
our simulation results in Fig. 10, that is, the differences between sFIR and MASM are much
smaller than those between GAM and MASM and between IL and MASM. On the other
hand, sFIR has larger variability in the tail of estimated HRFs and smaller height compared
to MASM. It may indicate that MASM provides more accurate estimation of HRF and its
associated parameters compared with GAM, IL, and sFIR.

We compared the results of MASM with those of FMHRF, which are presented in Fig. 14.
Fig. 14 shows that the estimated HRFs from MASM and FMHRF have similar profile.
However, compared with FMHRF, the estimated HRFs from MASM look smoother and can
capture more dynamic changes at their tails. This may be due to the fact that FMHRF only
uses fMRI data at each voxel, whereas MASM adaptively incorporates fMRI data from the
neighboring information of each voxel. If we could treat the estimated HRFs from sFIR as
the ground truth, the estimated HRFs from MASM are closer to those from sFIR than those
from FMHRF.

Finally, we applied MASM to the ‘raw’ fMRI data without using the Gaussian smoothing
step in the preprocessing pipeline. We used the same set of parameters in MASM to estimate
HRFs and compared them with those from MASM based on the smoothed fMRI data. See
Fig. 15 for detailed comparisons. Inspecting Fig. 15 reveals that although the estimated
HRFs from the raw and smoothed fMRI data have similar shape, their amplitudes based on
the raw fMRI data are larger than those based on the smoothed fMRI data since the use of
Gaussian smoothing can reduce the amplitudes of estimated HRFs.

We also calculated the three estimated HRF parameters from MASM, sFIR and GAM for all
subjects and then compared them across different methods. Note that we omitted IL here due
to its bad performance in those deactivated ROIs. For the sake of space, we only included
the estimated HRFs from the first stimulus sequence from all subjects. See additional results
from other stimulus sequences in Part E of Supplementary Document. Fig. 16 shows the
mean images of Ha, Tp, and W calculated from different methods in four selected slices. Fig.
17 displays the −log10(p) maps for statistically comparing MASM with sFIR, MASM with
GAM, and sFIR with GAM by using the paired t–test. Inspecting Fig. 16 (a.1) reveals that
although the heights from MASM are larger than those from sFIR and GAM, their values
are closer to those from sFIR than those from GAM for most voxels. This is consistent with
the results in Fig. 17 (a.1). In contrast, inspecting Fig. 16 reveals that the time-to-peaks and
widths from MASM are smaller than those from sFIR and GAM. For the width, as shown in
Fig. 17 (a.3), the difference between MASM and sFIR is smaller than those between MASM
and GAM and between sFIR and GAM. This is also consistent with the simulation studies
(see Fig. 10). As shown in Figs. 16 and 17, in many voxels, the estimated HRFs from
MASM have short delay and quick decay, but large amplitude, whereas those from sFIR
have long delay and slow decay, but small amplitude. It may indicate that MASM
outperforms sFIR in this fMRI data set.
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5. Conclusion and Discussion
This paper has developed a multi-scale adaptive smoothing model to spatially and
simultaneously estimate HRFs for the BOLD signals across all voxels. MASM is a
nonparametric estimation procedure, which is shown to be self-calibrating and accurate
when compared to other approaches in the time domain including the standard methods in
SPM. Also, compared with the method in Bai et al. (2009) and those in Lindquist et al.
(2009), our approach can provide more accurate and precise estimates of HRFs by involving
the local spatial and frequency information, as shown in the two simulations and the real
data analysis. Moreover, MASM does not assume any parametrical form and is useful for
justifying the parametrical models for HRF.

Many issues still merit further research. The first issue is to deal with weight computation
and bandwidth selection in MASM. Although there are several weight computation and
bandwidth selection procedures in the fMRI literature, their computational burden can be
either intractable in practice or are developed for different purposes. For instance, Friman et
al. (2003) developed a constrained canonical correlation analysis (CCA) to calculate the
weight information between any two curves in the temporal domain. Moreover, Worsley et
al. (1996) proposed an adaptive bandwidth selection method to perform spatial smoothing
for the random field theory.

The second issue is to select the optimal bandwidth in frequency (or temporal) and spatial
domains. One strategy is to separately determine the optimal bandwidth in each domain and
then independently apply them to fMRI data. In this case, one can apply the existing
methods to select the optimal bandwidth in either frequency/temporal or spatial domain
(Lepski (1990), Lepski et al. (1997), Donoho (1997)). The other strategy is to
simultaneously select the optimal bandwidth in both frequency (or temporal) and spatial
domains. In MASM, we use a two-stage strategy consisting of an initial frequency
smoothing step with an initial bandwidth r0 = 5/T and a simultaneous smoothing step of
expanding the spatial neighborhood exponentially and the frequency neighborhood linearly.
We design such strategy to balance between estimation accuracy and computational
efficiency for the ultra-high dimensional fMRI data. Although we have tested such strategy
in both simulation studies and real fMRI data, it is unclear whether or not the selected
bandwidth is theoretically optimal, which is a topic of our ongoing research.

The third issue is to develop a unified fMRI pipeline to perform fMRI data analysis. Such
fMRI pipeline may consist of five key tools including MASM for estimating HRFs, a
functional linear model for modeling HRFs across subjects, a testing procedure for detecting
activation sets, a clustering model for grouping different voxels in ROIs, and a network
model for integrating different ROIs into structural and functional brain hubs. The other four
key tools are topics of our ongoing research. We will present them elsewhere.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

References
1. Aguirre, Gk; Zarahn, E.; D’Esposito, M. The Variability of Human, BOLD Hemodynamic

Response. NeuroImage. 1998; 8:360–369. [PubMed: 9811554]

2. Bai P, Truong Y, Huang X. Nonparametric Estimation of Hemodynamic Response Function: A
Frequency Domain Approach. IMS Lecture Notes-Monograph Series. Optimality: The Third Erich
L Lehmann Symposium. 2009; 57:190–215.

Wang et al. Page 16

Ann Appl Stat. Author manuscript; available in PMC 2014 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. Bellgowan PSF, Saad ZS, Bandettini PA. Understanding Neural System Dynamics Through Task
Modulation and Measurement of Functional MRI Amplitude, Latency, and Width. Proceedings of
the National Academy of Sciences of the United States of America. 2003; 100:1415–1419.
[PubMed: 12552093]

4. Besag J. On the Statistical Analysis of Dirty Pictures (with discussion). Journal of the Royal
Statistical Society, Series B. 1986; 48:259–302.

5. Bohman H. Approximate Fourier Analysis of Distribution Function. Arkiv för Matematik. 1960;
4:99–157.

6. Bowman FD. Spatio-temporal Models for Region of Interest Analyses of Functional Mappping
Experiments. Journal of American Statistical Association. 2007; 102:442–453.

7. Boynton GM, Engel SA, Glover GH, Heeger DJ. Linear Systems Analysis of Functional Magnetic
Resonance Imaging in Human V1. The Journal of Neuroscience. 1996; 16:4207–4221. [PubMed:
8753882]

8. Breiman L, Friedman JH. Estimating Optimal Transformations for Multiple Regression and
Correlations (with discussions). Journal of the American Statistical Association. 1985; 80:580–619.

9. Brillinger DR. Cross-spectral Analysis of Processes with Stationary Increments Including the
Stationary G/G/∞ Queue. Annals of Probability. 1974; 2:815–827.

10. Brillinger, DR. Time Series: Data Analysis and Theory. HoldenDay; San Francisco, CA: 1981.

11. Brockwell, PJ.; Davis, RA. Time Series: Theory and Methods. 2. Springer-Verlag; New York:
1991.

12. Buxton RB, Wong EC, Frank LR. Dynamics of Blood Flow and Oxygenation Changes During
Brain Activation: the Balloon Model. Magnetic Resonance Medicine. 1998; 39:855–864.

13. Casanova R, Ryali S, Serences J, Yang L, Kraft R, Laurienti PJ, Maldjian JA. The Impact of
Temporal Regularization on Estimates of the BOLD Hemodynamic Response Function: A
Comparative Analysis. NeuroImage. 2008; 40:1606–1618. [PubMed: 18329292]

14. Donoho DL. CART and Best-Ortho-Basis: A Connection. The Annals of Statistics. 1997;
25:1870–1911.

15. Fan J, Huang L. Goodness-of-Fit Test for Parametric Regression Models. Journal of American
Statistical Association. 2001; 96:640–652.

16. Fan, J.; Yao, Q. Nonlinear Time Seires: Nonparametric and Parametric Methods. Springer-Verlag;
New York, Inc: 2003.

17. Formisano E, Goebel R. Tracking Cognitive Processes with Functional MRI Mental Chronometry.
Current Opinion in Neurobiology. 2003; 13:174–181. [PubMed: 12744970]

18. Friman O, Borga M, Lungberg P, Knutsson H. Adaptive Analysis of FMRI Data. NeuroImage.
2003; 19:837–845. [PubMed: 12880812]

19. Friston, KJ. Statistical Parametric Mapping: the Analysis of Functional Brain Images. Academic
Press; 2007.

20. Friston, KJ.; Ashburner, J.; Kiebel, SJ.; Nichols, TE.; Penny, WD. Statistical Parametric Mapping:
The Analysis of Functional Brain Images. Academic Press; 2009. Available at http://
www.fil.ion.ucl.ac.uk/spm/

21. Friston KJ, Jezzard P, Turner R. Analysis of Functional MRI Time-series. Human Brain Mapping.
1994; 1:153–171.

22. Genovese CR. A Bayesian Time-course Model for Functional Magnetic Resonance Imaging Data
(with discussion). Journal of American statistical Association. 2000; 95:691–703.

23. Glover GH. Deconvolution of Impulse Response in Event-related BOLD FMRI. NeuroImage.
1999; 9:416–429. [PubMed: 10191170]

24. Gössl C, Fahrmeir L, Auer DP. Bayesian Modeling of the Hemodynamic Response Function in
BOLD FMRI. NeuroImage. 2001; 14:140–148. [PubMed: 11525323]

25. Henson RNA, Price C, Rugg MD, Turner R, Friston K. Detecting Latency Differences in Event-
related BOLD Responses: Application to Words versus Nonwords, and Initial versus Repeated
Face Presentations. Neuroimage. 2002; 15:83–97. [PubMed: 11771976]

26. Huettel, SA.; Song, AW.; McCarthy, G. Functional Magnetic Resonance Imaging. Sinauer
Associates, Inc; 2004.

Wang et al. Page 17

Ann Appl Stat. Author manuscript; available in PMC 2014 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


27. Kim S, Smyth P, Stern H. A Bayesian Mixture Approach to Modeling Spatial Activation Patterns
in Multi-site FMRI Data. IEEE Transactions on Medical Imaging. 2010; 29:1260–1274. [PubMed:
20304727]

28. Lange N, Zeger SL. Nonlinear Fourier Time Series Analysis for Human Brain Mapping by
Functional Magnetic Resonance Imaging (with discussion). Journal of Royal Statistical
Society(series B). 1997; 46:1–29.

29. Lepski OV. One Problem of Adpative Estimation in Gaussian White Noise. Theory Probability and
Application. 1990; 35:459–470.

30. Lepski OV, Mammen E, Spokoiny VG. Optimal Spatial Adaptation to Inhomogeneous
Smoothness: An Approach Based on Kernel Estimates with Variable Bandwidth Selectors. The
Annals of Statistics. 1997; 25:929–947.

31. Li Y, Zhu H, Shen D, Lin W, Gilmore JH, Ibrahim G. Multiscale Adaptive Regression Models.
Journal of Royal Statistical Society, series B. 2011; 73:559–578.

32. Lindquist MA, Loh JM, Atlas LY, Wager TD. Modeling the Hemodynamic Response Function in
FMRI: Efficientcy, Bias and Mismodeling. NeuroImage. 2009; 45:187–198.

33. Lindquist MA, Wager TD. Vaidity and Power in Hemodynamic Response Modeling: A
Comparison Study and a New Approach. Human Brain Mapping. 2007; 28:764–784. [PubMed:
17094118]

34. Loh JM, Lindquist MA, Wager TD. Residual Analysis for Detecting Mismodeling in FMRI.
Statistica Sinica. 2008; 18:1421–1448.

35. Marchini JL, Ripley BD. A new Statistical Approach to Detecting Significant Activation in
Functional MRI. NeuroImage. 2000; 12:366–380. [PubMed: 10988031]

36. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL. Characterizing the Hemodynamic
Response: Effects of Presentation Rate, Sampling Procedure, and the Possibility of Ordering Brain
Activity Based on Relative Timing. NeuroImage. 2000; 11:735–759. [PubMed: 10860799]

37. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The Impact of Global Signal
Regression on Resting State Correlations: Are Anti-correlated Networks Introduced? NeuroImage.
2009; 44:893–905. [PubMed: 18976716]

38. Nichols TE, Holmes AP. Nonparametric Permutation Tests for Functional Neuroimaging: A
Primer with Examples. Human Brain Mapping. 2002; 15:1–25. [PubMed: 11747097]

39. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. Intrinsic Signal
Changes Accompanying Sensory Stimulation: Functional Brain Mapping with Magnetic
Resonance Imaging. Proceeding of National Academical Science. 1992; 89:5951–5955.

40. Ollinger JM, Shulman GL, Corbetta M. Separating Processes within a Trial in Event-related
Functional MRI. Neuroimage. 2001; 13:210–217. [PubMed: 11133323]

41. Polzehl J, Spokoiny VG. Adaptive Weights Smoothing with Application to Image Restoration.
Journal of Royal Statistical Society (series B). 2000; 62:335–354.

42. Polzehl J, Spokoiny VG. Propagation-separation Approach for Local Likelihood Estimation.
Probability Theory and Related Fields. 2006; 135:335–362.

43. Richter W, Somorjai R, Summers R, Jarmasz M, Menon RS, Gati JS, et al. Motor Area Activity
during Mental Rotation Studied by Time-resolved Single-trial FMRI. Journal of Cognitive
Neuroscience. 2000; 12:310–320. [PubMed: 10771414]

44. Shumway, RH.; Stoffer, DS. Time Series Analysis and Its Applications with R Examples. 2.
Springer-Verlag; New York: 2006.

45. Tabelow K, Polzehl J, Spokoiny V, Voss HU. Diffusion Tensor Imaging: Structural Adaptive
Smoothing. NeuroImage. 2008; 39:1763–1773. [PubMed: 18060811]

46. Tabelow K, Polzehl J, Voss HU, Spokoiny V. Analyzing FMRI Experiments with Structural
Adaptive Smoothing Procedure. NeuroImage. 2006; 33:55–62. [PubMed: 16891126]

47. Vakarin VA, Krakovska OO, Borowsky R, Sarty GE. Inferring Neural Activity from BOLD
Signals through Nonlinear Optimization. Neuroimage. 2007; 38:248–260. [PubMed: 17825582]

48. Woolrich MW, Behrens TE, Smith SM. Constrained Linear Basis Sets for HRF Modelling using
Variation Bayes. NeuroImage. 2004; 21:1748–1761. [PubMed: 15050595]

Wang et al. Page 18

Ann Appl Stat. Author manuscript; available in PMC 2014 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



49. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC. A Unified Statistical
Approach for Determing Significant Signals in Images of Cerebral Activation. Human Brain
Mapping. 1996; 4:58–73. [PubMed: 20408186]

50. Worsley KJ, Taylor JE, Tomaiuolo F, Lerch J. Unified Univariate and Multivariate Random Field
Theory. NeuroImage. 2004; 23:189–195.

51. Yue Y, Loh JM, Lindquist MA. Adaptive Spatial Smoothing of FMRI Images. Statistics and Its
Interface. 2010; 3:1–11.

52. Zhang CM, Fan J, Yu T. Multiple Testing via FDRL for Large-scale Imaging Data. The Annals of
Statistics. 2011; 39:613–642.

53. Zhang CM, Jiang Y, Yu T. A Comparative Study of One-level and Two-level Semiparametric
Estimation of Hemodynamic Response Function for Fmri Data. Statistics in Medicine. 2007;
26:3845–3861. [PubMed: 17551932]

Wang et al. Page 19

Ann Appl Stat. Author manuscript; available in PMC 2014 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 1.
A diagram of the fMRI signals generated by the circular convolution between the stimulus
sequence X(t) and the hidden HRF H(t) without specifying the voxel d for notional
simplicity. In the diagram of H(t), Ha is the response amplitude/height, Tp is the time-to-
peak, and W is the full-width at half-max.

Wang et al. Page 20

Ann Appl Stat. Author manuscript; available in PMC 2014 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 2.
Diagram of the case with multiple stimuli. The fMRI signals are the sum of three HRFs
convoluted with the corresponding sequences of stimulus events. The Xj(t) is the stimulus
sequence and Hj(t) is the HRF for j = 1, 2, and 3. We ignore the voxel d in Xj(t) and Hj(t) for
notional simplicity.
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Fig 3.
The set-up of Simulation I: (a.1) a temporal cut of the true activation pattern; (a.2) the true
HRFs with H1(t)/8, H2(t)/4, and H3(t)/2; (a.3) a temporal cut of simulated images; (a.4)
Gaussian smoothing of the simulated image. The ground true image has three different
active regions mixed with each other.
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Fig 4.
The estimated patterns and their mean curves of HRFs from Simulation I. The estimated
numbers of clusters may vary across simulations: (a.1 and a.2) number of clusters = 4; (b.1
and b.2) number of clusters = 5; and (c.1 and c.2) number of clusters = 6. The first column
includes the temporal cuts of the clustering results. The second column includes the
averaged estimated HRFs in their corresponding clustered patterns with the true HRFs,
which are represented by different colors.

Wang et al. Page 23

Ann Appl Stat. Author manuscript; available in PMC 2014 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 5.
The Boxplots of AMs (an accuracy measure) in Simulation I: the differences of the
estimated HRFs in the four different regions at the first 11 time points.
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Fig 6.
The comparison statistics Dd in Simulation I based on (a.1) the estimated Height (Ha); (a.2)
the estimated Time-to-Peak (Tp); and (a.3) the estimated Width(W) at each active voxel. The
color bar denotes the value of Dd at each voxel.
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Fig 7.
The set-up of Simulation II: (a.1) a temporal cut of the true images; (a.2) the true BOLD
signals Y (t); (a.3) a temporal cut of the simulated images; and (a.4) the true curves of HRF:
H1(t), H2(t), and H3(t), which are scaled into three different values representing the different
active regions corresponding to the three stimuli.
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Fig 8.
The estimated patterns and the mean curves of HRFs in their patterns for Simulation II. The
estimated patterns and their mean curves for the first stimulus sequence (a.1 and a.2); the
second stimulus sequence (b.1 and b.2); and the third stimulus sequence (c.1 and c.2). The
column (a.1, b.1, c.1) includes the temporal cuts of the clustering results. The column (a.2,
b.2, c.2) includes the averaged estimated HRFs in their corresponding clustered patterns
with the true HRFs, which are represented by using different colors. The numbers of the
clusters also vary across simulations for each stimulus sequence.
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Fig 9.
The mean HRFs in each region from the first stimulus sequence of one sample in Simulation
II, estimated from sFIR, IL and GAM based on the smoothed or non-smoothed data: (a.1, b.
1, c.1) the averaged estimated HRFs from raw data; and (a.2, b.2, b.2) the averaged
estimated HRFs from smoothed data. (a.1, a.2) mean HRFs estimated from sFIR; (b.1, b.2)
mean HRFs estimated from IL; and (c.1, c.2) mean HRFs estimated from GAM.

Wang et al. Page 28

Ann Appl Stat. Author manuscript; available in PMC 2014 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 10.
The values of Dd and paired-t test statistics in Simulation II: the values of Dd for the
estimated (a.1) Height (Ha); (b.1) Time-to-peak (Tp); and (c.1) Width (W); and paired t test
statistics for the estimated (a.2) Height (Ha); (b.2) Time-to-peak (Tp); and (c.2) Width (W) at
each active voxel for the three stimulus sequences. For panels (a.1), (b.1), and (c.1), the 1st,
2nd, and 3rd rows are the average values of Dd between MASM and sFIR, between MASM
and GAM, and between MASM and IL, respectively. For panels (a.2), (b.2), and (c.2), the
1st, 2nd, and 3rd rows are paired t test statistics between MASM and sFIR, between MASM
and GAM, and between MASM and IL, respectively. In each panel, the 1st, 2nd, and 3rd
columns come from the 1st, 2nd, and 3rd stimulus sequences, respectively. The paired t
statistics are truncated at −20.
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Fig 11.
The comparison statistics Dd in Simulation II with sFIR based on (a.1)–(a.3) estimated
Height (Ha); (b.1)–(b.3) estimated Time-to-peak (Tp); and (c.1)–(c.3) estimated Width(W) at
each active voxel for the three stimulus sequences. The color bar denotes the value of Dd for
the d–th voxel.
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Fig 12.
The comparison statistics Dd in Simulation II with IL based on (a.1)–(a.3) estimated Height
(Ha); (b.1)–(b.3) estimated Time-to-peak (Tp); and (c.1)–(c.3) estimated Width(W) at each
active voxel for the three stimulus sequences.
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Fig 13.
The comparison statistics Dd in Simulation II with GAM based on (a.1)–(a.3) estimated
Height (Ha); (b.1)–(b.3) estimated Time-to-peak (Tp); and (c.1)–(c.3) estimated Width(W) at
each active voxel for the three stimulus sequences.

Wang et al. Page 32

Ann Appl Stat. Author manuscript; available in PMC 2014 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 14.
The fMRI data analysis results: (a.1, b.1, c.1, d.1) the selected slices of the F-statistic maps
with significant ROIs for the 1st–4th stimulus sequences from the top to the bottom, in
which red, yellow, and brown colors represent the selected significant ROIs; (a.2, b.2, c.2, d.
2) estimated HRFs in the significant ROIs corresponding to each stimulus from MASM
(red), IL (blue), sFIR (green), and GAM (yellow); (a.3, b.3, c.3, d.3) estimated HRFs from
MASM (red) and FMHRF (green) in the significant ROIs.
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Fig 15.
The fMRI real data analysis results: (a.1)–(a.4) estimated HRFs from MASM based on the
smoothed fMRI data (red) and based on the ‘raw’ fMRI data (green) in each ROI.
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Fig 16.
The fMRI real data analysis results: the mean images of the estimated (a.1) Height (Ha); (a.
2) Time-to-Peak (Tp); and (a.3) Width (W) at some selected slices. The first row is from
MASM; the second row is from sFIR; and the third row is from GAM.

Wang et al. Page 35

Ann Appl Stat. Author manuscript; available in PMC 2014 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 17.
The fMRI real data analysis results: the −log10(p) images for testing the differences of the
estimated (a.1) Height (Ha); (a.2) Time-to-Peak (Tp); and (a.3) Width (W) across different
methods at some selected slices. The first row is from the differences between MASM and
sFIR; the second row is from the differences between MASM and GAM; the third row is
from the differences between sFIR and GAM.
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Table 1

Comparisons of average computing times (in seconds) in the same computer but with the different
programming environments. sFIR, IL and GAM are written in Matlab and MASM in the computer language
C.

sFIR IL GAM MASM

One Stimulus 1.47 2934.6 5.31 67.33

Three Stimuli 3.04 9927.3 13.74 219.0
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