178 research outputs found

    Compact color texture descriptor based on rank transform and product ordering in the RGB color space

    Get PDF

    Robust recognition and segmentation of human actions using HMMs with missing observations

    Get PDF
    This paper describes the integration of missing observation data with hidden Markov models to create a framework that is able to segment and classify individual actions from a stream of human motion using an incomplete 3D human pose estimation. Based on this framework, a model is trained to automatically segment and classify an activity sequence into its constituent subactions during inferencing. This is achieved by introducing action labels into the observation vector and setting these labels as missing data during inferencing, thus forcing the system to infer the probability of each action label. Additionally, missing data provides recognition-level support for occlusions and imperfect silhouette segmentation, permitting the use of a fast (real-time) pose estimation that delegates the burden of handling undetected limbs onto the action recognition system. Findings show that the use of missing data to segment activities is an accurate and elegant approach. Furthermore, action recognition can be accurate even when almost half of the pose feature data is missing due to occlusions, since not all of the pose data is important all of the time

    Improving End-to-End Text Image Translation From the Auxiliary Text Translation Task

    Full text link
    End-to-end text image translation (TIT), which aims at translating the source language embedded in images to the target language, has attracted intensive attention in recent research. However, data sparsity limits the performance of end-to-end text image translation. Multi-task learning is a non-trivial way to alleviate this problem via exploring knowledge from complementary related tasks. In this paper, we propose a novel text translation enhanced text image translation, which trains the end-to-end model with text translation as an auxiliary task. By sharing model parameters and multi-task training, our model is able to take full advantage of easily-available large-scale text parallel corpus. Extensive experimental results show our proposed method outperforms existing end-to-end methods, and the joint multi-task learning with both text translation and recognition tasks achieves better results, proving translation and recognition auxiliary tasks are complementary.Comment: Accepted at the 26TH International Conference on Pattern Recognition (ICPR 2022

    Video enhancement using adaptive spatio-temporal connective filter and piecewise mapping

    Get PDF
    This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC) noise filter and an adaptive piecewise mapping function (APMF). For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises - Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results

    Toward An Efficient Fingerprint Classification

    Get PDF

    EURASIP Journal on Applied Signal Processing 2005:13, 2110–2126 c ○ 2005 Hindawi Publishing Corporation Robust Recognition and Segmentation of Human Actions Using HMMs with Missing Observations

    Get PDF
    This paper describes the integration of missing observation data with hidden Markov models to create a framework that is able to segment and classify individual actions from a stream of human motion using an incomplete 3D human pose estimation. Based on this framework, a model is trained to automatically segment and classify an activity sequence into its constituent subactions during inferencing. This is achieved by introducing action labels into the observation vector and setting these labels as missing data during inferencing, thus forcing the system to infer the probability of each action label. Additionally, missing data provides recognitionlevel support for occlusions and imperfect silhouette segmentation, permitting the use of a fast (real-time) pose estimation that delegates the burden of handling undetected limbs onto the action recognition system. Findings show that the use of missing data to segment activities is an accurate and elegant approach. Furthermore, action recognition can be accurate even when almost half of the pose feature data is missing due to occlusions, since not all of the pose data is important all of the time
    • …
    corecore