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Abstract

Color information is generally considered useful for tex-

ture analysis. However, an important category of highly ef-

fective texture descriptors – namely rank features – has no

obvious extension to color spaces, on which no canonical

order is defined. In this work, we explore the use of par-

tial orders in conjunction with rank features. We introduce

the rank transform based on product ordering, that general-

izes the classic rank transform to RGB space by a combined

tally of dominated and non-comparable pixels. Experimen-

tal results on nine heterogeneous standard databases con-

firm that our approach outperforms the standard rank trans-

form and its extension to lexicographic and bit mixing total

orders, as well as to the preorders based on the Euclidean

distance to a reference color. The low computational com-

plexity and compact codebook size of the transform make it

suitable for multi-scale approaches.

1. Introduction

Color texture analysis is routinely used in many com-

puter vision applications such as image-based medical di-

agnosis, land cover classification from satellite imagery, au-

tomated quality inspection, grading of agricultural and food

products, etc. It has been shown by many authors that tak-

ing into account color information generally improves the

performance – at least under steady illumination conditions

– see for instance [30] and [6]. In the last two decades rank

features have emerged as one of the most robust tools for

image analysis. Examples of this approach are the well-

known local binary patterns and their variants [7, 29], rank

transform [38], texture spectrum [18], ranklets [35], direc-

tional rank coding [34] and sudoku rank features [17], all

of which rely on a “greater than” relation between pairs of

gray level values. The extension of such methods to color

images has so far been limited by the absence of a natural

ordering in the color spaces, where statements like pink is

greater than brown don’t make any sense.

In this work we present a novel approach to color texture

analysis based on rank features in color space. The key idea
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is to replace the order relation over intensity values by a

suitable partial order in color space. By doing so we admit

that some pairs of colors are not comparable, as will become

apparent later. We present an implementation of this idea

by extending a classic method, the rank transform (RT), to

work with a partial ordering (the product order) in the RGB

space. The result is a compact yet highly effective local

descriptor for color images.

In the remainder of the paper, after providing some back-

ground on partial orders (Sec. 2), we briefly review how

rank-based descriptors have been defined in the literature

for both grayscale and color texture analysis (Sec. 3). We

present the proposed approach in Sec. 4 and validate the

method through a set of classification experiments over nine

datasets of color texture images (Sec. 5). The results clearly

show that our method is more effective at discriminating

texture than the original rank transform, either based on

gray levels, or on different orders or preorders on the RGB

color space. Section 6 concludes the paper and discusses

directions for future work.

2. Theoretical background

We recall in this section some basic notions about order

relations and briefly review the existing approaches for the

ordering of multi-dimensional data.

2.1. Order relations

A total order ≤ is a binary relation on a set X for which

the following four properties hold for any three elements

and a, b and c of X:

• Antisymmetry: a ≤ b ∧ b ≤ a =⇒ a = c

• Transitivity: a ≤ b ∧ b ≤ c =⇒ a ≤ c

• Totality: a ≤ b ∨ b ≤ a

• Reflexivity: a ≤ a

Totality establishes that any two elements of X are com-

parable; it also implies reflexivity, as can be seen by setting

a = b. By discarding totality for the weaker requirement

of reflexivity we obtain a partial order. This differs from a

total order in that there will be elements of X that are not

comparable to each other.

Finally, a preorder or quasiorder is a binary relation that

is both reflexive and transitive (but not necessarily total or

antisymmetric). The lack of antisymmetry means there can

be cases where both a weakly dominates b and b weakly

dominates a without a and b being equal; see Sec. 3.2 for

an example. Total orders and partial orders are special cases

of a preorder. Tab. 1 summarizes the definitions just intro-

duced.

Table 1. Overview of order relationships.

Preorder Partial order Total order

Reflexivity ✦ ✦ ✦

Transitivity ✦ ✦ ✦

Antisymmetry – ✦ ✦

Totality – – ✦

2.2. Ordering multidimensional data

The application of rank features to color or multispectral

images is anything but straightforward for multidimensional

data lack a natural way of ordering. Research has so far

focused on restricted ordering principles or sub-orderings.

These can be broadly divided into the four categories sum-

marized below [2].

Marginal ordering (M-ordering) Multivariate ordering

consists of sorting the data separately by one or more com-

ponents. Lexicographical ordering is an example of M-

ordering: for instance in the RGB space one could sort the

color data first by R, then by G and finally by B (or fol-

lowing any other sequence obtained by a permutation of the

channels). The major shortcoming of this approach, how-

ever, is that colors close to each other in the color space can

end up very far apart after the ordering.

Reduced (aggregate) ordering (R-ordering) In this case

multivariate data are preliminarily converted to univariate

through some ad hoc functions. One could for instance es-

tablish a reference point (pivot) in the multivariate space

and sort the data by their distance to it.

Conditional (sequential) ordering (C-ordering) In C-

ordering the members of a random multivariate sample

are sorted according to the corresponding values of an-

other (usually univariate) random sample. An example of

C-ordering is provided by statistically equivalent blocks,

which consists of splitting a multidimensional space into

subspaces or blocks through the use of one-dimensional cut-

ting functions [32].

Partial ordering (P-ordering) Partial ordering differs

from total ordering in that the totality condition is not re-

quired: in practice we accept that there will be pairs of el-

ements incomparable to each other. We have already in-

troduced partial ordering in Sec. 2.1; we shall discuss the

partial ordering used in this work (i.e. product order) in

Sec. 4.2.

Interestingly, most approaches to deal with order in color

space belong to the first two categories. For instance, rank-
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ing based on the gray level can be either seen as a marginal

ordering in the HSV space (along the V axis) or as a re-

duced or aggregate ordering in the RGB space, where the

aggregating function is the standard color to grayscale con-

version.

3. Rank-based texture features

Rank features are defined in terms of the relative order

(rank) among pixels, with the actual pixel values being dis-

carded. By definition rank features are invariant to any

monotonic change in the illumination intensity, a feature

that makes them particularly suited for dealing with noise

and sensor non-linearities [20].

Though most of the rank-based descriptors proposed in

the literature are intended for grayscale image analysis, a

number of methods for color images have also been de-

scribed. We briefly review the two classes in the following

subsections.

3.1. Grayscale analysis

Local image descriptors based on pixel intensity can ei-

ther rely on a full ranking or thresholding. In the first case

neighboring pixels are ranked according to their grayscale

value and features are extracted from the rank signature.

Examples of this approach are: rank transform [38], com-

plete rank transform [15, 10], ranklets [35], n-tuples [19],

directional rank coding [34] and local intensity order pat-

tern [37]. In the second case features are computed from

pairwise comparisons of pixel values. Most descriptors be-

longing to this group can actually be considered as LBP

variants [7, 29].

3.2. Color analysis

The extension of grayscale rank-based methods to color

images usually involves computing the ranking on each

color channel separately and/or on pairs of color chan-

nels [6]. A classic example are the opponent-color local

binary patterns proposed by Mäenpää and Pietikäinen [31].

A similar approach was introduced by Bianconi et al. [5] to

compute rotation-invariant color texture features from ran-

klets [35]. More involved procedures to compute intra- and

inter-channel features have been proposed by Lee et al. [27]

(local color vector binary patterns), and, more recently, by

Cusano et al. [12] (local angular patterns).

An alternative strategy is that of inducing an arbitrary

ordering (typically M- or R-ordering) on the multivariate

color data. Ledoux et al. [26] is an up-to-date, thorough

investigation on this class of methods. In the remainder of

this section we describe the three approaches that we con-

sidered for the comparative study, i.e.: lexicographic order,

bit mixing and reference color.

Lexicographic order This well-known color comparison

relation is a total order based on priorities between the com-

ponents of a vector [1]. Using the priorities R ⊲ G ⊲ B

where ⊲ means “has priority over”, a color c0 = (r0, g0, b0)
in the RGB space is less than or equal to a color c1 =
(r1, g1, b1) according to the following rule:

c0 ≤ c1 ⇐⇒ (r0 < r1) ∨ [(r0 = r1) ∧ (g0 < g1)]

∨ [(r0 = r1) ∧ (g0 = g1) ∧ (b0 ≤ b1)] (1)

In the experiments we considered the following priority

sequences: R ⊲ G ⊲ B, B ⊲ G ⊲ R, and G ⊲ B ⊲ R.

Obviously, the main shortcoming of this approach is that the

color order induced strongly depends on how the priorities

are defined.

Bit mixing This is a total order widely used in multival-

ued morphological filtering [11]. This paradigm associates

an integer value to each color from the binary representa-

tion of their chromatic components. For convenience let us

denote a color in the RGB space as c = (c0, c1, c2) and the

n-th bit of the k-th component as ck,n, with 0 ≤ k ≤ 2 and

0 ≤ n ≤ 7 (we have implicitly assumed that intensity is

discretized to 8-bits). We can build up a 24-bit integer by

mixing the bits of the three chromatic components like this:

N(c) =

7
∑

n=0

[

23n
2

∑

k=0

2kcπ(k),n

]

(2)

where π represents a permutation of the chromatic channels

(represented by their indices {0, 1, 2}). The bit mixing or-

der is then defined as:

c0 ≤ c1 ⇐⇒ N(c0) ≤ N(c1) (3)

In the experiments we took into account the following

bit-mixing permutations: RGB, BGR, and GBR. Similarly

to the lexicographical order, the bit mixing order strongly

depends on how the color components are permuted.

Reference color This preorder relies on the Euclidean

distance between a color and a reference color, referred to

as cref. The relation that compares two colors c0 and c1

with respect to the reference color is defined as [25]:

c0 � c1 ⇐⇒ ||c0 − cref|| ≤ ||c1 − cref|| (4)

Herein we used two reference colors: black (0, 0, 0) and

a shade of gray (127, 127, 127). Needless to say that the ref-

erence color should be judiciously chosen since this choice

may have a great impact on the resulting order.
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4. Proposed approach

In the following subsections we provide a description

and mathematical formulation of the image descriptor pro-

posed in this paper. But before getting into the technicali-

ties of the method we recall the basics of the rank transform

(Sec. 4.1) and product order (Sec. 4.2).

4.1. Rank transform

The rank transform was first proposed by Zabih and

Woodfill [38]. In this model the image is scanned through

a sliding window of N × N pixels and the feature value at

each position is the number of pixels in the periphery of the

local neighborhood the intensity of which is less than that

of the central pixel. In the original implementation N = 3,

but other values are also possible (see Fig. 1). The kernel

function that induces an equivalence relationship between

local patterns [16] can be written as:

fRT(x) =

P−1
∑

j=0

ξ (Ic − Ij − 1) (5)

where x represents the set of the pixels’ intensities in the

neighborhood, Ic the intensity of the central pixel, Ij that

of a generic peripheral pixel and P = 4× (N − 1) the total

number of the peripheral pixels. Symbol ξ (x) indicates the

binary thresholding function:

ξ(x) =

{

1, if x ≥ 0

0, if x < 0
(6)

Clearly fRT can return any integer in the [0, P ] interval,

which results in a set of P + 1 possible patterns. Image

features are the dense, orderless distribution over the set of

the possible patterns. Note that the features so calculated

are intrinsically invariant to rotation and to any permutation

of the peripheral pixels.

4.2. Product order

Given an ordered setX , one can induce a partial ordering

on the Cartesian product X ×X ×X [14]. This is referred

to as the product order (also called component-wise order).

If X is the set of intensity levels of one channel of an RGB

image (for an 8-bit intensity scale such set would be formed

by the integers from 0 to 255) this can be extended to or-

der colors in a straightforward manner. Given two triplets

c0 = (r0, g0, b0) and c1 = (r1, g1, b1) representing the

RGB coordinates of two pixels, the product order relation

establishes that:

c0 �× c1 ⇐⇒ r0 ≤ r1 ∧ g0 ≤ g1 ∧ b0 ≤ b1 (7)

Conversely, when two colors are not comparable we

shall write:

c0 ≁× c1 ⇐⇒ ¬(c0 �× c1) ∧ ¬(c1 �× c0) (8)

Note that in the above equations we use symbol � rather

than ≤ to emphasize the fact that this binary relation is a

partial order, and subscript × to signal that this particular

partial order is the product order.

It is instructive to show that the product order in the RGB

space has an intuitive geometric interpretation. Let us con-

sider a generic color c0 = (r0, g0, b0) in the RGB space as

shown in Fig. 2, where points (0, 0, 0) and (1, 1, 1) respec-

tively indicate colors ‘black’ and ‘white’. We have that:

• Any color in the (closed) green region dominates c0

• any color in the (closed) brown region is dominated by

c0

• any other color outside the two above regions is incom-

parable to c0

Though the product order (as well as other types of par-

tial orders) can be applied to any color space, in this work

we restrict the study to partial ordering in the RGB space.

4.3. Rank transform based on product order
(RTPO)

Let φ be a function that takes in two RGB triplets and re-

turns 1 when the first one is dominated by the second as per

the product order and 0 otherwise, and ψ another function

that flags (with a 1) the situation in which the arguments are

not comparable:

φ(cj , cc) =

{

1, if cj ≺× cc

0, otherwise
(9)

ψ(cj , cc) =

{

1, if cj ≁× cc

0, otherwise
(10)

where cc is the RGB triplet corresponding to the central

pixel and cj , 0 ≤ j ≤ P − 1, is the RGB triplet of the j-th

peripheral pixel. Notice that in Eq. 10 we replaced the sym-

bol �× introduced in Eq. 7 by ≺× to be consistent with the

strict inequality employed in the original implementation of

the rank transform [38]. Those functions are handy to com-

pute the number of peripheral pixels that are dominated by

(λ) and not comparable to (ν) the central pixel:

λ =
P−1
∑

j=0

φ(cj , cc) (11)

ν =

P−1
∑

j=0

ψ(cj , cc) (12)
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Figure 1. Different pixel neighborhoods considered in this study.

Figure 2. Volumes induced in the RGB color space by triplet

(r0, g0, b0) and the product order.

Both are non negative integer numbers, and are con-

strained to 0 ≤ λ+ν ≤ P . The kernel function that assigns

a label to a local pattern can be expressed as a function of

those numbers:

fRTPO(x) = ν +
λ−1
∑

i=0

P−i−1
∑

k=0

1 = ν +
λ(2P + 3− λ)

2
(13)

where x in this case represents an array containing the RGB

triplets of the pixels in the local neighborhood.

To further illustrate the kernel above, in Tab. 2 we display

the pattern labels for a 3× 3 neighborhood as a function of

λ and ν. Clearly the number of possible features F can be

computed as the number of ways to distribute n unlabelled

balls into k labelled urns [3, Th. 4.2.6]; the balls being the

peripheral pixels and the urns the possible outcomes of the

comparison with the central pixel, i.e.: dominates, is dom-

inated or non comparable. Since n = P and k = 3 we

have:

Table 2. Kernel of the rank transform based on product order as a

function of λ and ν for a 3× 3 neighborhood

λ

ν

0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8

1 9 10 11 12 13 14 15 16

2 17 18 19 20 21 22 23

3 24 25 26 27 28 29

4 30 31 32 33 34

5 35 36 37 38

6 39 40 41

7 42 43

8 44

F =

(

n+ k − 1

k − 1

)

=

(

P + 2

2

)

=
(P + 2) (P + 1)

2
(14)

Thus the dimensions of the histograms that result from

the neighborhoods of size 3×3, 5×5 and 7×7 are 45, 153

and 325, respectively.

5. Experimental results

To assess the effectiveness of the proposed approach

we ran a set of image classification experiments on nine

datasets of color texture images from different sources.

Tab. 3 summarizes the main properties of each dataset along

with references/URLs.

Our primary goal was to comparatively assess, using

a set-up as simple as possible, the performance of RTPO

against that of the RT based on gray levels (original RT)

and on the orders and preorders described in Sec. 3.2. To

this end we used a simple 3 × 3 square neighborhood of

pixels and the nearest neighbor classifier (1-NN) with Eu-

clidean distance. The use of this classifier is standard prac-

tice in comparative studies – see for instance [22, 28, 13] –
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Table 3. Datasets used in the experiments: round-up table

ID Name Classes Samples Sample size (px)
Variations in

Sample images Ref.
per class imaging conditions

1 Kather 8 625 150× 150 None [23]

2 KTH-TIPS2b 11 432 200× 200 4 , 9 ü, 3 Y [8]

3 Kylberg-Sintorn 25 216 1728× 1728 9 < [24]

4 MondialMarmi 25 40 1500× 1500 10 < [4]

5 Outex-13 68 20 128× 128 None [33]

6 PapSmear 2 204 67× 92 – 300× 768 Unspecified [21]

7 PlantLeaves 20 60 128× 128 None [9]

8 RawFooT 68 184 400× 400 46  [13]

9 STex 476 16 128× 128 Unspecified [36]

KEY TO SYMBOLS: = illumination, <= rotation, ü= scale, Y= viewpoint

due to the absence of tuning parameters, ease of implemen-

tation and other desirable asymptotic properties. Accuracy

estimation was based on split-half validation with stratified

sampling over 100 random splits. For each subdivision into

train and test set we computed the fraction of samples of the

test set correctly classified and averaged the results over the

100 splits.

The results obtained are summarized in the box plot of

Fig. 3. As can be seen, in most datasets RTPO outperformed

the other methods by a large margin. We also notice that

the overall accuracy varied a lot from one dataset to an-

other: this is due to the fact that the image datasets differ

from each other in a number of significant factors such as

the overall number of classes, the imaging conditions and

the stationariness of the textures. To test whether there

was significant difference between the accuracy of RTPO

and that of the other descriptors we performed a two-sided

Wilcoxon signed-rank test at significance level α = 1%.

The results (Tab. 4) show that RTPO significantly outper-

formed the other descriptors in eight datasets out of nine,

whereas in the remaining one the difference was very slight

(<0.1%).

We also performed a second group of experiments to de-

termine how much the accuracy of RTPO features could be

improved by using a multi-resolution approach and more

sophisticated classifiers such as decision trees and sup-

port vector machines. This experiment included datasets

‘Kather’, ‘KTH-TIPS2b’, ‘Outex-13’ and ‘RawFooT’. The

multi-scale approach consisted of concatenating the feature

vectors resulting from employing the three different neigh-

borhoods shown in Fig. 1. Optimal parameters C and γ for

the rbf-SVM classifier were estimated, for each descriptors

and image dataset, through exhaustive grid search. The pa-

rameters of the decision tree classifier (i.e.: maximum depth

of the tree, minimum number of samples required to split an

internal node and minimum number of samples required to

be at a leaf node) were determined in a similar fashion. In

the case of decision trees the dimension of the feature vec-

tors was preliminary reduced through PCA before classifi-

cation.

The results of this second group of experiments are

graphically displayed in Fig. 4. Here the labels ‘1’, ‘2’ and

‘3’ respectively denote: the features obtained with the 3×3
neighborhood, the concatenation of the features obtained

with the 3 × 3 and 5 × 5 neighborhoods and the concate-

nation of the features obtained with the 3 × 3, 5 × 5 and

7 × 7 neighborhoods. The total number of features by the

three configurations respectively is 45, 198 and 523.

The plots in Fig. 4 clearly show that the overall accuracy

significantly improved by adopting the multi-resolution ap-

proach and SVM classification. Decision trees, however,

did not provide any benefit compared with nearest-neighbor

classification.
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Figure 3. Box plots of the success rates obtained on the different datasets. RT: rank transform on gray levels; Lex: RT on lexicographic

orders; Mix: RT on bit mixing orders; Ref: RT on reference color preorders; RTPO: the proposed enhanced RT over the product order.

Table 4. Results of the Wilcoxon signed-rank test at significance level 1%. For all the datasets the rank transform based on the product

order is compared to the best performing benchmark descriptor.

ID Name Best preorder
Mean accuracy

p-value Significant?
Best preorder Partial order

1 Kather Ref 127 64.67% 77.40% 3.88e-18 Yes

2 KTH-TIPS2b Lex GBR 73.57% 87.71% 3.88e-18 Yes

3 Kylberg-Sintorn Lex RGB 99.07% 99.80% 3.84e-18 Yes

4 MondialMarmi Lex BGR 100.00% 99.94% 1.83e-05 Yes

5 Outex-13 Lex RGB 64.26% 64.84% 3.74e-03 Yes

6 PapSmear Ref 0 66.24% 83.48% 3.85e-18 Yes

7 PlantLeaves Ref 0 50.74% 63.41% 3.88e-18 Yes

8 RawFooT Ref 0 80.51% 92.29% 3.89e-18 Yes

9 STex Ref 0 33.14% 69.15% 3.89e-18 Yes

1038
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Figure 4. Results obtained through multi-scale analysis and different classifiers.

6. Conclusions and future work

In this paper we have introduced RTPO (rank transform

based on product order), a compact yet effective local image

descriptor for color textures. Our approach generalizes a

classic descriptor (rank transform) to RGB color images via

a particular type of partial order, i.e. the product order.

In a set of color texture classification experiments RTPO

proved more effective than the original rank transform – ei-

ther based on grayscale on other arbitrary orders and pre-

orders on the RGB space. We found that the improvement

was statistically significant. The highest success rates were

obtained with a multi-scale approach and SVM classifica-

tion. Remarkably, the proposed method provides a compact

representation of color texture, the number of features for

square neighborhoods of size 3× 3, 5× 5 and 7× 7 respec-

tively being 45, 153 and 325.

As far as we know the use of partial orders is entirely

novel in this context. The results established so far seem

very promising and encourage further investigation. In par-

ticular, we plan to utilize the product order with other rank

features to make them suitable for color texture analysis.

Another direction for future research is the investigation of

other types of partial orders (different than the product or-

der) that may better integrate color information into rank

features.
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