183 research outputs found

    Piecewise linear regularized solution paths

    Full text link
    We consider the generic regularized optimization problem β^(λ)=argminβL(y,Xβ)+λJ(β)\hat{\mathsf{\beta}}(\lambda)=\arg \min_{\beta}L({\sf{y}},X{\sf{\beta}})+\lambda J({\sf{\beta}}). Efron, Hastie, Johnstone and Tibshirani [Ann. Statist. 32 (2004) 407--499] have shown that for the LASSO--that is, if LL is squared error loss and J(β)=β1J(\beta)=\|\beta\|_1 is the 1\ell_1 norm of β\beta--the optimal coefficient path is piecewise linear, that is, β^(λ)/λ\partial \hat{\beta}(\lambda)/\partial \lambda is piecewise constant. We derive a general characterization of the properties of (loss LL, penalty JJ) pairs which give piecewise linear coefficient paths. Such pairs allow for efficient generation of the full regularized coefficient paths. We investigate the nature of efficient path following algorithms which arise. We use our results to suggest robust versions of the LASSO for regression and classification, and to develop new, efficient algorithms for existing problems in the literature, including Mammen and van de Geer's locally adaptive regression splines.Comment: Published at http://dx.doi.org/10.1214/009053606000001370 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On Security and Sparsity of Linear Classifiers for Adversarial Settings

    Full text link
    Machine-learning techniques are widely used in security-related applications, like spam and malware detection. However, in such settings, they have been shown to be vulnerable to adversarial attacks, including the deliberate manipulation of data at test time to evade detection. In this work, we focus on the vulnerability of linear classifiers to evasion attacks. This can be considered a relevant problem, as linear classifiers have been increasingly used in embedded systems and mobile devices for their low processing time and memory requirements. We exploit recent findings in robust optimization to investigate the link between regularization and security of linear classifiers, depending on the type of attack. We also analyze the relationship between the sparsity of feature weights, which is desirable for reducing processing cost, and the security of linear classifiers. We further propose a novel octagonal regularizer that allows us to achieve a proper trade-off between them. Finally, we empirically show how this regularizer can improve classifier security and sparsity in real-world application examples including spam and malware detection
    corecore