5 research outputs found

    Parameterized Intractability of Even Set and Shortest Vector Problem from Gap-ETH

    Get PDF
    The k-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over F_2, which can be stated as follows: given a generator matrix A and an integer k, determine whether the code generated by A has distance at most k. Here, k is the parameter of the problem. The question of whether k-Even Set is fixed parameter tractable (FPT) has been repeatedly raised in literature and has earned its place in Downey and Fellows\u27 book (2013) as one of the "most infamous" open problems in the field of Parameterized Complexity. In this work, we show that k-Even Set does not admit FPT algorithms under the (randomized) Gap Exponential Time Hypothesis (Gap-ETH) [Dinur\u2716, Manurangsi-Raghavendra\u2716]. In fact, our result rules out not only exact FPT algorithms, but also any constant factor FPT approximation algorithms for the problem. Furthermore, our result holds even under the following weaker assumption, which is also known as the Parameterized Inapproximability Hypothesis (PIH) [Lokshtanov et al.\u2717]: no (randomized) FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only 0.99-satisfiable (where the parameter is the number of variables). We also consider the parameterized k-Shortest Vector Problem (SVP), in which we are given a lattice whose basis vectors are integral and an integer k, and the goal is to determine whether the norm of the shortest vector (in the l_p norm for some fixed p) is at most k. Similar to k-Even Set, this problem is also a long-standing open problem in the field of Parameterized Complexity. We show that, for any p > 1, k-SVP is hard to approximate (in FPT time) to some constant factor, assuming PIH. Furthermore, for the case of p = 2, the inapproximability factor can be amplified to any constant

    Covering Small Independent Sets and Separators with Applications to Parameterized Algorithms

    Full text link
    We present two new combinatorial tools for the design of parameterized algorithms. The first is a simple linear time randomized algorithm that given as input a dd-degenerate graph GG and an integer kk, outputs an independent set YY, such that for every independent set XX in GG of size at most kk, the probability that XX is a subset of YY is at least (((d+1)kk)⋅k(d+1))−1\left({(d+1)k \choose k} \cdot k(d+1)\right)^{-1}.The second is a new (deterministic) polynomial time graph sparsification procedure that given a graph GG, a set T={{s1,t1},{s2,t2},…,{sℓ,tℓ}}T = \{\{s_1, t_1\}, \{s_2, t_2\}, \ldots, \{s_\ell, t_\ell\}\} of terminal pairs and an integer kk, returns an induced subgraph G⋆G^\star of GG that maintains all the inclusion minimal multicuts of GG of size at most kk, and does not contain any (k+2)(k+2)-vertex connected set of size 2O(k)2^{{\cal O}(k)}. In particular, G⋆G^\star excludes a clique of size 2O(k)2^{{\cal O}(k)} as a topological minor. Put together, our new tools yield new randomized fixed parameter tractable (FPT) algorithms for Stable ss-tt Separator, Stable Odd Cycle Transversal and Stable Multicut on general graphs, and for Stable Directed Feedback Vertex Set on dd-degenerate graphs, resolving two problems left open by Marx et al. [ACM Transactions on Algorithms, 2013]. All of our algorithms can be derandomized at the cost of a small overhead in the running time.Comment: 35 page

    Parameterized Intractability of Even Set and Shortest Vector Problem

    Get PDF
    The -Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over , which can be stated as follows: given a generator matrix and an integer , determine whether the code generated by has distance at most , or, in other words, whether there is a nonzero vector such that has at most nonzero coordinates. The question of whether -Even Set is fixed parameter tractable (FPT) parameterized by the distance has been repeatedly raised in the literature; in fact, it is one of the few remaining open questions from the seminal book of Downey and Fellows [1999]. In this work, we show that -Even Set is W[1]-hard under randomized reductions. We also consider the parameterized -Shortest Vector Problem (SVP), in which we are given a lattice whose basis vectors are integral and an integer , and the goal is to determine whether the norm of the shortest vector (in the norm for some fixed ) is at most . Similar to -Even Set, understanding the complexity of this problem is also a long-standing open question in the field of Parameterized Complexity. We show that, for any , -SVP is W[1]-hard to approximate (under randomized reductions) to some constant factor

    07281 Open Problems -- Structure Theory and FPT Algorithmcs for Graphs, Digraphs and Hypergraphs

    No full text
    The following is a list of the problems presented on Monday, July 9, 2007 at the open-problem session of the Seminar on Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs, held at Schloss Dagstuhl in Wadern, Germany
    corecore