5,624 research outputs found

    The effect of the distributed test architecture on the power of testing

    Get PDF
    Copyright @ 2008 Oxford University PressThere has been much interest in testing from finite-state machines (FSMs). If the system under test can be modelled by the (minimal) FSM N then testing from an (minimal) FSM M is testing to check that N is isomorphic to M. In the distributed test architecture, there are multiple interfaces/ports and there is a tester at each port. This can introduce controllability/synchronization and observability problems. This paper shows that the restriction to test sequences that do not cause controllability problems and the inability to observe the global behaviour in the distributed test architecture, and thus relying only on the local behaviour at remote testers, introduces fundamental limitations into testing. There exist minimal FSMs that are not equivalent, and so are not isomorphic, and yet cannot be distinguished by testing in this architecture without introducing controllability problems. Similarly, an FSM may have non-equivalent states that cannot be distinguished in the distributed test architecture without causing controllability problems: these are said to be locally s-equivalent and otherwise they are locally s-distinguishable. This paper introduces the notion of two states or FSMs being locally s-equivalent and formalizes the power of testing in the distributed test architecture in terms of local s-equivalence. It introduces a polynomial time algorithm that, given an FSM M, determines which states of M are locally s-equivalent and produces minimal length input sequences that locally s-distinguish states that are not locally s-equivalent. An FSM is locally s-minimal if it has no pair of locally s-equivalent states. This paper gives an algorithm that takes an FSM M and returns a locally s-minimal FSM M′ that is locally s-equivalent to M.This work was supported in part by Leverhulme Trust grant number F/00275/D, Testing State Based Systems, Natural Sciences and Engineering Research Council (NSERC) of Canada grant number RGPIN 976, and Engineering and Physical Sciences Research Council grant number GR/R43150, Formal Methods and Testing (FORTEST)

    Generating a checking sequence with a minimum number of reset transitions

    Get PDF
    Given a finite state machine M, a checking sequence is an input sequence that is guaranteed to lead to a failure if the implementation under test is faulty and has no more states than M. There has been much interest in the automated generation of a short checking sequence from a finite state machine. However, such sequences can contain reset transitions whose use can adversely affect both the cost of applying the checking sequence and the effectiveness of the checking sequence. Thus, we sometimes want a checking sequence with a minimum number of reset transitions rather than a shortest checking sequence. This paper describes a new algorithm for generating a checking sequence, based on a distinguishing sequence, that minimises the number of reset transitions used.This work was supported in part by Leverhulme Trust grant number F/00275/D, Testing State Based Systems, Natural Sciences and Engineering Research Council (NSERC) of Canada grant number RGPIN 976, and Engineering and Physical Sciences Research Council grant number GR/R43150, Formal Methods and Testing (FORTEST)

    Checking sequence construction using adaptive and preset distinguishing sequences

    Get PDF
    Methods for testing from finite state machine-based specifications often require the existence of a preset distinguishing sequence for constructing checking sequences. It has been shown that an adaptive distinguishing sequence is sufficient for these methods. This result is significant because adaptive distinguishing sequences are strictly more common and up to exponentially shorter than preset ones. However, there has been no study on the actual effect of using adaptive distinguishing sequences on the length of checking sequences. This paper describes experiments that show that checking sequences constructed using adaptive distinguishing sequences are almost consistently shorter than those based on preset distinguishing sequences. This is investigated for three different checking sequence generation methods and the results obtained from an extensive experimental study are given

    The STRESS Method for Boundary-point Performance Analysis of End-to-end Multicast Timer-Suppression Mechanisms

    Full text link
    Evaluation of Internet protocols usually uses random scenarios or scenarios based on designers' intuition. Such approach may be useful for average-case analysis but does not cover boundary-point (worst or best-case) scenarios. To synthesize boundary-point scenarios a more systematic approach is needed.In this paper, we present a method for automatic synthesis of worst and best case scenarios for protocol boundary-point evaluation. Our method uses a fault-oriented test generation (FOTG) algorithm for searching the protocol and system state space to synthesize these scenarios. The algorithm is based on a global finite state machine (FSM) model. We extend the algorithm with timing semantics to handle end-to-end delays and address performance criteria. We introduce the notion of a virtual LAN to represent delays of the underlying multicast distribution tree. The algorithms used in our method utilize implicit backward search using branch and bound techniques and start from given target events. This aims to reduce the search complexity drastically. As a case study, we use our method to evaluate variants of the timer suppression mechanism, used in various multicast protocols, with respect to two performance criteria: overhead of response messages and response time. Simulation results for reliable multicast protocols show that our method provides a scalable way for synthesizing worst-case scenarios automatically. Results obtained using stress scenarios differ dramatically from those obtained through average-case analyses. We hope for our method to serve as a model for applying systematic scenario generation to other multicast protocols.Comment: 24 pages, 10 figures, IEEE/ACM Transactions on Networking (ToN) [To appear
    corecore